

ESPON 2013 Open Seminar 3-4 June 2009, Prague, Czech Republic

TIPTAP

Territorial Impact Package for Transport and Agricultural Policies

First results on Territorial Impact Assessment

Roberto Camagni (Politecnico di Milano)

The Team

Project Leader: DIG – Politecnico di Milano

Roberto Camagni, Roberta Capello, Camilla Lenzi, Andrea Caragliu

Partners and subcontractors:

Centre for Rural Economy, School of Agriculture, Food and Rural Development, **Newcastle University** Mark Shucksmith, Marian Raley, Guy Garrod

Department of Spatial Economics, Free University Amsterdam

Ron Vreeker, Frank Bruinsma, Peter Nijkamp

MCRIT SL, Barcelona Andreu Ulied, Efrain Larrea

1. The model: from TEQUILA to TIPTAP

TEQUILA

T erritorial

E fficiency

QU ality

I dentity

L ayered

A ssessment

Model

(Camagni, 2006; ESPON 2006)

TIPTAP

T erritorial

I mpact

P ackage for

T ransport and

A gricultural

P olicies

(ESPON 2013)

2. What is TEQUILA?

- 1. A Multicriteria Model for Territorial Impact Assessment of EU policies
- 2. Territorial impact = impact on territorial cohesion
- 3. The 3 main components of territorial cohesion:

Territorial Efficiency:

resource-efficiency with respect to energy, land and natural resources; competitiveness and attractiveness; internal and external accessibility

Territorial Quality:

the quality of the living and working environment; comparable living standards across territories; fair access to services of general interest and to knowledge

Territorial Identity:

"social capital"; landscape and cultural heritage; creativity; productive "vocations" and "uniqueness" of each territory

3. The working of the TEQUILA Model

- 4. The 3 components of the T.C. concept (and their sub-components) become the *criteria* in the *Assessment Model*
- 5. The *weights* of the 3 criteria (and sub-criteria) are *flexible*: now they are assessed by a panel of experts
- 6. Territorialization of impacts is necessary, as:
- Policy intensity is different in ≠ regions
- Single impacts are perceived differently in ≠ regions (utility function)
- Vulnerability to single (negative) impacts is different in ≠ regions
- Receptivity to single (positive) impacts is different in ≠ regions

3. The working of the TEQUILA Model

- 7. The general impact of EU policies on each criterion is defined using ad hoc studies: on CAP, on Transport policies
- 8. Each study defines the **impact sub-criteria** inside each main criterion (TE, TQ, TI).

These sub-criteria are used:

- to measure Single-dimensional impacts
- to compute Summative Impacts (on TE, TQ, TI and overall impact)
- 9. For each sub-criterion, **impact indicators** are defined and computed.

4. The Territorial Assessment Model: TIM

TIMr =
$$\sum c \theta c \cdot PIMr_{,c} \cdot Sr_{,c}$$

TIM = territorial impact

c = criterion of the multi-criteria method

r = region

 θc = weight of the c criterion

PIM = potential impact of policy

Sr,c = sensitivity of region r to criterion c

$$Sr,c = Dr,c \cdot Vr,c$$

Dr,c = desirability of criterion c for region r (territorial "utility function")

Vr,c = vulnerability of region c to impact PIMc (receptivity for positive impacts): a vector of regional characteristics

4. The Territorial Assessment Model: TIM

- 10. The single PIMs are computed:
- either through an econometric / simulation model (for Transport Policies)
- or through impact indicators and experts judgements (for CAP)

11. In this last case:

PIMr,c = PIr . PIMc . INr

where PI = policy intensity and IN are regional indicators

4. The Territorial Assessment Model: TIM

- 12. Desirability of each impact criterion for each region (e.g. growth, or env. quality) and vulnerability of each region to each impact criterion are assessed through expert judgements
- 13. Observed ranges of indicators are scaled / normalized into a sub-interval of the 0-1 range according to an expert judgement procedure (value function)
 - Established, advanced methodologies: pairwise comparison, Analytical Hierarchical Process,
- 14. Three expert meetings were organised:
 - in Amsterdam (march), in order to test the methodology
 - in Barcelona (may), in order to test transport policy impacts
 - in Newcastle (may), in order to test CAP policy impacts

5. The way travelled

For the two policies inspected:

- Policy definition and policy scenarios
- Impact sub-criteria
- Logical chain, from policy to impacts
- Construction of impact indicators and PIMs
- Definition with experts of:
 - * weights for criteria and sub-criteria
 - * value functions for impact normalisation
 - * desirability and vulnerability coefficients
- Mapping of PIMs

Still the way to go:

- TIMs for Single Dimensional Impacts and Summative Impacts
- New hypotheses on weights: questionnaire and European Value Survey

Pillar 1: supports food production through Single Farm Payments

Pillar 2: supports rural development - over four axes

Policy trend is to move funding away from direct payments under Pillar 1 into Pillar 2 (e.g. through "modulation")

An "extreme" policy scenario:

- A 20% reduction in the Single Farm Payment (SFP) to eligible farms in EU-15
- A quarter of this (i.e. 5% of SFP) redistributed to Pillar 2 under modulation
- Modulated funds distributed according to current national strategies.
- Scenario for EU-12: a 20% reduction in direct payments but all transferred to Pillar 2 (not yet implemented)

Distribution of CAP spending	2009 budget (preliminary) (Million euros)
Total	55.920
Pillar 1: Decoupled direct aid	32.530
Pillar 1: Other direct aid	5.990
Pillar 1: Market support	3.460
Pillar 2: Rural development, <i>of which</i>	13.400
agri-env and LFAs	9.830

Comparison to present situation:

- From 2007 to 2012 there is a compulsory annual reduction in a farm's SFP of 5% of any amount received over € 5.000.
- All of this is then transferred to Pillar 2 and at least 80% of their modulated funds are returned to individual member states and then allocated by them as they see fit.

Rationale of the Scenario (EU-15):

- An extreme policy scenario can provide wider variation in territorial impacts for the model to predict.
- Reduction in spending under Pillar 1 is a policy priority.
- Financial climate may support come reduction of the budget for CAP in a time of financial constraint.
- This scenario achieves a budget reduction but maintains modulation at current level.

Data problems:

- Most relevant data on agricultural indicators exists only at either national or NUTS2 level
- Existing models e.g. CAPRI, Seamless, POMMARD may be useful but cannot at present fulfill our needs.
- Policy intensity in each region is not defined ex-ante, and main decisions concerning modulation are up to national authorities.

Policy intensity in regions:

- The impacts of the policy scenario will be felt most strongly in those territories where SFP makes up the highest proportions of agricultural incomes and where agricultural incomes make up a higher proportion of GDP.
- Regional breakdown of Policy expenditure (P1 and P2) according to Espon estimates (2003) for 1999.

7. Territorial Impact of CAP: logical chain

- Reduction in farm incomes for farms receiving over € 5.000 per year
- 2. Farmer either accepts this or reallocates resources to regain lost income
- 3. Ability to regain lost income is determined by a variety of factors:
- Farmer may be able to enrol land into an agri-environment scheme (AES) and obtain payments under Pillar 2.
- Costs could be reduced by lower labour inputs or through economies of scale (e.g. enlarging farm, specialisation)
- Farmers could diversify into tourism or other on-farm economic activities.

7. Territorial Impact of CAP: logical chain

Economic and environmental consequences

- 1. Increase in unemployment
- 2. Amalgamation of smaller farms into larger more, viable units
- 3. Some marginal farms may cease production this could lead to landscape change and in some cases (e.g. terraced cultivation) soil erosion could occur
- 4. More land in AESs should improve environmental and landscape quality.

Social consequences

- If unemployment levels are high already, additional unemployment could encourage outmigration and lead to a decline in rural services
- 6. Farmers may diversify into regional products as a marketing strategy
- 7. Loss of social benefits if traditional agricultural landscape are lost

8. CAP Impact Indicators

Criterion	Variab	Sub-criter.	Туре	Definition	Measurement	
	PIM_E1	Economic growth	Benefit	Modulation/Total GDP; Modulation = [(regional increase in P2) – (regional cut in P1)]	% change in GDP	
	PIM_E2	Unemploy- ment	Cost	(Unemployment rate) * (Share of agricultural employment)*(PIM_E1 normalised)	% change in unempl. rate	
	PIM_E3	Tourism Diversificat.	Benefit	(Number of beds in rural areas/Km2 in agriculture) * (PIM_E2 normalised)	new tourism beds per Km2	
TQ Quality	PIM_Q1	Environment. quality	Benefit	((Total agricultural area entered into agri- environm. schemes under Pillar2 of Cap) / Total agricultural area)*100	% of agricultural areas into agri-environmt. schemes	
	PIM_Q2	Community viability	Cost	[((Share of areas occupied by farms <10 ha) +(share of population aged >65)+(share of employment in agriculture))*(PIM_E1 normalised)]/3	social deprivation	
	PIM_Q3	Emissions	Cost	Variation in livestock emissions (Tons CH4 per year)	emissions	
	PIM_Q4	Risk of soil erosion	Cost	Areas at risk of soil erosion (ton/ha/year)*(5% of areas of farms <10ha/total agricultural areas)*100	% of abandoned areas + erosion probability	
TI Identity	PIM_I1	Landscape diversity	Cost	(5% of areas of farms <10ha / total agricultural areas)*100	% of abandoned /incorpor. agricultural areas	
	PIM_I2	Community identity	Cost	[(0,1*(Share of people aged >15 and <65) + (share of employment in agriculture) + (unempl. rate))*(PIM_E1 normalised)]*100/3	outmigration probabil. (%)	
	PIM_I3	Heritage products	Benefit	[(Employment in agriculture/ Gross Fixed Capital Formation in agriculture)*(PIM_E1 normalised)] / Max value	product diversification and innovation probabil.	

9. Impact on Economic Growth (benefit)-TE

9. Impact on Unemployment (cost) - TE

9. Impact on Tourism Diversification (benefit) - TE

9. Impact on Environmental Quality (benefit) - TQ

9. Impact on Community Viability (cost) - TQ

9. Impact on Risk of Soil Erosion (cost) - TQ

9. Impact on Landscape Diversity (cost) - TI

9. Impact on Community Identity (cost) - TI

10. IMPACT INDICATORS: RELATIVE WEIGHTS

Criterion	Weight	Variable		Weight
TE Efficiency	0,58	PIM_E1	Economic growth	0,21
		PIM_E2	Unemployment	0,34
		PIM_E3	Tourism diversification	0,45
TQ Quality	0,30	PIM_Q1	Environmental quality	0,38
		PIM_Q2	Community viability	0,08
		PIM_Q3	Emissions	0,01
		PIM_Q4	Risk of soil erosion	0,52
TI Identity	0,12	PIM_I1	Landscape diversity	0,19
		PIM_I2	Community identity	0,49
		PIM_I3	Heritage products	0,32

These are experts judgements concerning weights of impact subcriteria, for computing Summative Impacts.

Your help is gratefully requested in order to corroborate these judgements

THANKS FOR YOUR ATTENTION!

Thanks for your attention, comments and suggestions!

Roberto Camagni

Department of Management, Economics and Industrial Engineering

DIG - Politecnico di Milano

Piazza Leonardo da Vinci 32 - 20133 MILANO

tel: +39 02 2399.2744 - 2750 segr.

fax: +39 02 2399.2710

roberto.camagni@polimi.it www.economiaterritoriale.it