

Challenges for the ESPON Database Development

Project ESPON DB 2013 (Priority 3)

Espon Seminar, Praha, 2009 June 3-4th

EUROPEAN UNION
Part-financed by the European Regional Development Fund
INVESTING IN YOUR FUTURE

Introduction - The information cube

Scale dimension:

- Local (1 to 10 km)
- Medium (10 to 1000 km)
- Global (1000 to 10 000 km)

Time dimension:

- Short term (1995-2015)
- Medium term (1980-2020)
- Long Term (1950 2050)

Thematic dimension:

- Economic competitiveness
- Sustainable environment
- Social cohesion

Geographical object :

- Administrative units
- Grids
- Cities & Networks

Introduction - The information cube of ESPON Database 2006

Scale dimension:

- Local (Zooms)
- Medium (Nuts2 / Nuts3)
- Global (Europe in the WOrld)

Time dimension:

- Short term (1995-2003)
- Medium term (demography)
- Long term (Europe in the World)

Thematic dimension:

- Economic competitiveness
- Sustainable environment
- Social cohesion

Geographical object:

- Administrative units
- Cities & Networks
- Grids

Introduction - The expected information cube of ESPON Database 2013

ESPON DB 2006

ESPON DB 2013 (!?)

Introduction – Information cube and challenges

Challenge 1 : Collection of basic regional data

Objectives : Collection of basic indicators in new NUTS 2006 territorial division derived from EUROSTAT & EEA

Situation : Estimations and computations of data sources are necessary to have complete datasets. Some datasets are now available, builded by ESPON DB 2013 project

Next steps: Enlarging the integration to other geographical objects (cities, world, grids); integrate into the ESPON DB the datasets of TPG's.

Coord: RIATE

1.1 Total population

Full datasets available for NUTS0, 1, 2 and 3 from 2000 to 2006

1.2 GDP (euros and PPS)

Full datasets available for NUTSO, 1, 2 and 3 from 2000 to 2005

1.3 Active population and unemployed persons

Full datasets available for NUTS0, 1, 2 and 2-3 from 2000 to 2007

1.4 Age pyramid

Full dataset available for NUTS0, 1, 2 in 2005

1.5 How downloading these datasets?

- By using the ESPON Database
- By contacting directly the ESPON DB Manager: manager@espondb.eu

Challenge 2: Harmonisation of time series

Objectives: Harmonisation of time series for the period 1995-2006

Situation: non compatibility of NUTS1995, NUTS1999, NUTS2003, and NUTS2006 ...

Strategy: Collection of data at each period « as they are » and elaboration of harmonisation procedures.

Coord: IGEAT

1 Semantic expertise of NUTS Changes: how nuts can change?

- As defined by the regulation (CE) N° 1059/2003 of 26 th, NUTS is composed by:
- Name, code, geometry and hierarchical level which can change over time.
- The evolution of NUTS is very complex: several changes can happen in the same time and at different level (systemic conception)

2 Overview of the extent of NUTS changes:

Static Nuts according to all criterion (name, code, geometry and hierarchical level) between 1995-2006

3 Example of case stady analysis: the danish Nuts 2003-2006

Lines in red show the nuts3 in 2003, lines in green show the nuts3 in 2006

NUTS1

Hierarchy: 2003: NUTS0= NUTS1= NUTS2 # NUTS3

2006: NUTS0 = NUTS1 # NUTS2 # NUTS3

2006

Geometry: Split of DK00

				Type of changes			entities life
code 2006	% Geom	code 2003	NAME	2006-2003	2003-1999	1999-1995	2006-2003
0		DK00	Danmark	Split	no	no	broken
DK01	4,2	DK00	Hovedstaden	Split	0	0	created
DK02	18,2	DK00	Sjælland	Split	0	0	created
DK03	26,9	DK00	Syddanmark	Split	0	0	created
DK04	36,3	DK00	Midtjylland	Split	0	0	created
DK05	14,4	DK00	Nordjylland	Split	0	0	created

2003 2006

territorial reorgonization

complex change of Geometry

Challenge 3: World / Regional data

Objectives: combine datasets at world level (by states) and datasets at European level (by NUTS regions)

Situation:

- 1) No direct compatibility between world data by states (UN) and EU data by Region (e.g. Eurostat)
- 2) No direct compatibility between world databases

Strategy:

- 1) Elaboration of tools for compatibility between NUTS and WUTS data (key question of state: NUTS0=WUTS5?)
- 2) Elaboration of tools to ensure comparibility between world databases

Coord: RIATE & UNEP

3.1 Heterogeneous world databases

3.2 Example of new structural data (IMF GDP estimations)

IMF World Economic Outlook

- 200 units (countries or territories)
- published 2 times / year (with forecast at t+5)
- Population, GDP, Balance, ...

Example: Prevision of GDP for year 2009 (in pps)

Country	Apr. 2008	Apr.2009	DIFABS	DIFREL
Malta	24	10	-14	-59%
Cyprus	41	23	-18	-43%
Estonia	31	25	-7	-21%
Latvia	43	34	-9	-20%
Lithuania	70	58	-12	-17%
Ireland	203	175	-28	-14%
Iceland	13	11	-1	-10%
Luxembourg	43	38	-4	-10%
Czech Republic	282	255	-27	-9%
Finland	201	183	-19	-9%

3.2 Example of new structural data (IMF GDP estimations)

4 000 BILLIONS DOLLARS, BABY!

DIFFERENCE BETWEEN ESTIMATION OF GDP FOR YEAR 2009 MADE BY IMF IN APRIL 2008 AND APRIL 2009

Source: World Economic Outlook, Apr. 2008 & Apr. 2009

3.3 Example of new flow data (CHELEM)

CHELEM Database

- 92 units (countries or group)
- 41 years (1967 to present)
- 150 products (oil, machine, cereals)

Example: Dominant trade flows 2004-2006

3.3 Example of new flow data (CHELEM)

Example: Dominant trade flows 2004-2006

Challenge 4 : Regional / Local data

Objectives: Develop case studies providing zoom on specific territories at local level (rural areas, cross border areas, intra-urban differentiation, ...).

Situation: no complete data +geometry available at LAU1 or LAU2 level.

Strategy: Elaboration of coherent local sources (data

+ geometry) with Eurostat, Eurogeographics and national statistical institutes

Coord: TIGRIS

4.1. Harmonisation of geometries

Eurostat / GISCO: Administrative boundaries for municipalities in 2001, 2004 and 2006 for ESPON space + Ukraine, Moldavia, Croatia and Kosovo

4.2. Analysis of data availability

National Statistical Offices: example of the Czech Republic

4.3. Download of statistical tables

4.4. Check of data/geometry compatibility

Challenge 5 : Social / Environmental data

Objectives: Making easier the combination of socio-economic data (EUROSTAT) and environmental data (EEA)

Situation: Initiatives for grid harmonisation. Development of GRID<-> NUTS tools

Strategy: Implementation of data exchange tools in ESPON DB. Networking with Eurostat/EEA/JRC on this topic (in the framework of INSPIRE).

Coord: UAB (ETC-LUSI)

5.1 Description of challenge 5

Combining socio-economic data measured for administrative areas (NUTS level) and environmental data defined on a regular grid (CORINE Land Cover). Integration of data based on the 1km reference grid

1. Maximum area criteria:

2. Proportional calculation

Cell value = $\sum (V_i * Share_i)$

V_i = Value of unit i

Share_i = Share of unit i within the cell

V1 * 0.85 + V2 * 0.15

3. Proportional and weighted calculation

Cell value = $Wc \Sigma (V_i * Share_i)$

V_i = Value of unit i

Share_i = Share of unit i within the cell

Wc = weight assigned to cell

Wc(V1 * 0.85 + V2 * 0.15)

5.2 Corine Land Cover to GRID

- Urban Dominance: when the area of urban zones covers most of the cell area of the grid.
- Data Source: Urban Morphological Zones 2000 (EEA)

5.3 NUTS to GRID

- GDP in euro 2002 weighted by Population 2001
- Data sources: Wealth and Production NUTS level 3 (version 2003) (Eurostat), Population density 2001 (JRC)

Challenge 6 : Urban Data

Objectives:

Insure compatibility between the different definitions of cities and urban areas currently available

Situation:

Great diversity of definitions, difficulty to combine data from different sources

Strategy:

Storage of metadata, dictionary of cities with common codification, conceptual clarification (technical reports)

1 - Semantic expertise

- ☐ Urban objects are complex geographical objects
 - ☐ They are evolving through time in a geometric way implying an evolution of delineation
 - ☐ They are evolving through time in a semantic way implying to take into account a multiscalar perspective in their definition (agglomeration, commuting)
 - →evolving sources for "measuring" the city
 - → Multiplicity of possible databases
 - → Heterogeneity of international databases
 - → Possible incoherence of temporal data bases
- ☐ An illustration: Urban Audit LUZ (Larger Urban Zones)
 - □ 2 reference years (UA 2001 and UA 2004): temporal coherence?
 - ☐ Spatial heterogeneity of the national definitions: spatial coherence?