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Introduction 

An important aspect of the ESPON Database 2013 Phase II project (hereinafter 
referred to as M4D1) is the explicit attention paid to the detection and appropriate 

handling of potentially anomalous data. A set of anomaly detection techniques 
suitable for M4D data has been developed by a team at the National Centre for 

Geocomputation.  This builds on existing ideas for techniques developed in the earlier 
project: ESPON Database 2013, and part of this document is based on the techniques 
described in the report: Spatial Analysis for Quality Control Phase 1: the identification 

of logical input errors and statistical outliers.  
 

A major function of the M4D Database is to act as a repository for data created and 
used by the various project under the ESPON programme. The data typically are 
supplied towards the end of the project period.  The data flow, checks, and processes 

which form the workflow from supplier to database have been developed by the M4D 
partners.  Notable is the importance given to the metadata for every indicator in each 

dataset.  This is used in the data quality check process to determine which tests are to 
be applied to the dataset in order to build the weight of evidence in favour of an 

observation being unusual or not.   
 
This combined report covers three of the NCG deliverables – (i) methods for spatially 

normalised data, (ii) methods for spatially un-normalised data and (iii) consideration  
of an implementation of the methods . Reports (i) and (ii) are really two components 

of something that is logically connected. This leadss into (iii) which appraoch is 
described in detail and is illustrated with a breif example session. 
 

The overall approach is driven by  
 

(a) the type of the data (typology, stock, ratio…) 
(b) the spatial units (NUTS, UMZ…) 
(c) the application of exploratory techniques 

(d) application of tests taking indicators singly, in pairs and in groups 
(e) the application of aspatial and spatial tests 

(f) the organisation of the datasets from the ESPON projects 
(g) the timetable for the dataflow. 

 

There is still some minor development work to undertake which will be completed 
shortly. 

                                    
1 M4D: MultiDimensional Database Design and Development 
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Outlier checking and the Database 

Work Package A2 deals with the problems which are attendant on the presence or 
otherwise of anomalies in the data for the Database.  In the Inception report the three 

subsections of this package are Time Series, Outlier Handling, and Data Quality. As 
work on these has progressed it is clear that some adjustment to the original 

somewhat vague intentions is required, and that these intentions need to be made 
somewhat clearer. 

In their wide ranging survey Chandola et al (2007) assert that “Anomalies are 

patterns in data that do not conform to a well-defined notion of normal behaviour”. 
They also point out that such notions are often domain dependent, and this is 

reflected in the terminological variation which is encountered; this includes: anomaly, 
outlier, discordant observation, aberration, surprise, peculiarity, and contaminant.  
There are a wide variety of anomaly detection approaches which have been developed 

over the years, but many of these are specific to particular domains, such as the 
detection of credit card fraud.  They suggest that there are several challenges in 

anomaly detection: 

defining a ‘normal’ region is  difficult 

normal behaviour tends to evolve 

the notion of an anomaly is different in different application domains 

the availability of training (‘labelled’) data is a major issue 

the noise inherent in the data may make anomalies difficult to detect 

Hawkins (1980) opens his monograph with the pragmatic definition of an outlier to be 
“an observation which deviates so much from other observations as to arouse 

suspicion that it was generated by a different mechanism”.  Another view of outliers is 
that they are one or more observations that greatly influence the value of a statistical 

estimator.  Chandola in general and Hawkins in particular conceive of an outlier as 
something that arises from some process, whereas we might also think of an outlier 
that has a particular outcome on the result of an experiment.  

Earlier work on the identification of outliers includes Pearson and Sekar (1936); in the 
1950s researchers such as Grubbs (1950, 1951) and Dixon (1950) developed simple 

tests for detection. Hawkins (1980) summarised the state of the art in his survey of 
identification techniques.  More recently the development of computational data 
mining techniques has led further work. Ben-Gal, (2005) summarises recent 

developments and provide an overview. Most recent work includes that of Peter 
Filzmoser and his colleagues at Technische Universität Wien in Filzmoser et al (2005, 2008, 
2012).   

Software libraries for outlier detection include three R packages (available at 

http://cran.r-proejct.org). Komsta’s outliers package implements  some simple 
univariate tests including those of Grubbs, Dixon and Cochran. Van der Loos’ package 
extremevalues provides an interactive approach to the identification of extreme values 

in one-dimensional data.  Peter Filzmoser is a leading researcher in this area, and has 
contributed mvoutlier, a package which provides methods for outlier detection in 

multivariate data based on robust methods.  

Ben-Gal (2005) divides outlier detection tests into those univariate data and those for 

multivariate data. Earlier work in outlier detection concentrated on a single indicator 
whereas considering the behaviour of several indicators simultaneously has been the 
subject of more recent research. Methods may also be parametric (that is, they 

assume an underlying model for the data, often the normal distribution) or non-
parametric (they do not assume the data arise from a particular model). Techniques 
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may also be distance based – they are based on lcaol distance measures or cluster 

based – they attempt to detect clustered outliers.  Finally we should also note that 
there exist tests for spatial outliers. An interesting phenomenon is that an observation 

which may be an outlier in a multivariate sense (the combination of indicators is 
unusual), it need not be an outlier in the univariate case. 

It is clear that a single general purpose anomaly detector into which an ESPON project 
dataset can be placed and which prints a report highlighting the NUTS regions in 
which there appear to be anomalous data is perhaps a chimera.  The range of ESPON 

projects, and the diversity of the data which is offered as potential input to the 
database mean that we have to think of a range of generic techniques which can be 

selected as appropriate and applied to a particular dataset.  It is also desirable that 
the anomaly detection that is run on a dataset could be re-run at a future date, and 
which would yield the same results: in other words, the process should be 

reproducible.  

We need to make some simplifying assumptions about the potential uses of the 

Database data; what may be uncomfortable data for one application may be that 
which highlights special cases in another.  A ‘one-size-fits-all’ rule is not appropriate. 
However, data that is clearly wrong should be corrected.  Identifying that which is 

wrong is context specific.  For example an indicator which is a categorisation with 4 
categories which the metadata list as 1,2, 3, 4 should contain no other values apart 

from those;  data which are counts should belong to the set of positive integers – we 
cannot have a negative count of residential population. More challenging are 
indicators such as the male unemployment rate; some regions with particularly 

pressing economic problems may have very high unemployment rates which lie far in 
the upper tail of the distribution of values.  Income data tend to reflect the factor that 

most people in a region have modest incomes, but there are a few very rich 
individuals among them. Whilst such upper tail values may be anomalous, they are 
not wrong.  

We might then consider the nature of the methods we use to detect anomalies, and 
whether they are influenced by the anomalies themselves.  Wright and London (2009) 

show that statistics which make assumptions about the underlying distribution of the 
data (for example: that it follows a normal distribution) may be unduly influenced by 
anomalies.  The presence of anomalous values tends to lower the chance of finding a 

significant result in a statistical analysis.  

 

ESPON datasets and data quality checking 

The data sent from the ESPON projects has a well-defined layout.  Each spreadsheet 

contains four labelled worksheets, containing (a) general information about the 
dataset (b) metadata about the indicators (c) metadata on the sources and (d) the 
data itself.  The data tables are organised such that rows represent observations 

(usually NUTS regions) and the columns represent indicators.  The columns are 
logically organised into pairs such that the first contains the data values and the 

second contains the source key.   

We have chosen to use the R statistical environment (R, 20xx) for creating the 
functions that undertake the anomaly detection.  First, R is free and open source 

software; the anomaly detection is not tied to any one commercial product. Second, 
there is an enormous range of contributed packages which implement an equally 

enormous range of statistical methods. Third, users can create their own functions, 
created from different combinations of the existing functions, rapidly and easily. 
Fourth, R scripts provide a reproducible approach to the analysis of data.  A function 

in R can range from a simple function that returns the sine of a given angle, through 
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ones that fit complex multivariate models, to ones that read and act on spatial data, 

and finally functions that summarise and display in a range of visual formats. R’s 
strength is its flexibility.  

Our approach has been to provide a library of detection methods which can be 
assembled in a series of templates. The templates provide a basic outline for the 

different sorts of data which we expect to encounter in the data quality activities.  
Currently there are two templates, one for time-series data, and one for cross-
sectional data.  An instance of a template is the result of its adaption for a particular 

dataset.  Eventually there will be at least as many instances as there are ESPON 
datasets supplied for data quality assessment. 

The output of data for the Database by an ESPON project is in the form of one or 
more Excel spreadsheets.  We have adopted the principle that we do not work directly 
on the spreadsheet: rather, we copy the data into R and work on that copy. The 

copying is done invisibly and does not require human agency save that of invoking 
three R functions. 

The following sections outline (a) the issues and approaches involved in handling time 
series (b) the issue and approaches involved in handling cross-sectional data and (c) 
the modus operandi for dealing with the data quality operation in the M4D workflow.  
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Outlier detection 

We start by considering the nature of the data in each indicator. A binary classification 

of data is that the values for either categorical or continuous. Categorical data have 
the property that a small number of distinct values exist: such data can be either 

nominal or ordinal.  That is: either the categories are unordered, or the categories are 
ordered.  We often refer to the latter as ranks. Continuous data are sometimes 
categorised into interval data and ratio data.  Interval data are those in which there is 

no well-defined zero  (for example: the zero points in the Fahrenheit and Celsius 
temperature scales are arbitrary). Ratio data has well defined zeros, such that the 

ratio of two value has a sensible interpretation. 

We have an additional problem with spatial data. The indicators form the attributes of 
the spatial units which have been used in the work undertaken by the Project Partner 

who has supplied the dataset for checking. The tests we can conveniently use require 
that the spatial data are consistent, and that any regions with missing values have 

been removed. Islands present an interesting problem too: they have no adjacent 
neighbours so the computation of the spatial weights matrices for the spatial tests 
should have cognisance of this.  

In examining the datasets for anomalous data there are two main approaches: 
exploratory and statistical.  The exploratory approaches we have comprise initial data 

summaries, and exploratory visualisations, and the latter lead us towards creating 
evidence in favour of an observation have one or more items of anomalous data.   

Logical input errors 

Logical input errors can arise for a number of reasons. For example, the wrong NUTS1 
code could be specified; incorrect data values could be input; data could be repeated 

exactly but assigned to different variables; data could be displaced within or between 
columns; data could be swapped within or between columns. In general, the 
identification of an input error will follow some logical, mathematical approach. For 

example, if a land use class could only take a positive integer value from 1 to 9 say, 
then an input error of say, -2, 4.5 or 10 would be easily identified.  

An input error may also be identified statistically. For example, if the number 27 is 
inadvertently entered as 72 for a region‟s unemployment rate, the value 72 may lie in 

the extreme tail of this variable‟s distribution and as such, is statistically-outlying. A 

difficulty here would be to distinguish between an input error of 72 and a true value of 
72.  

In this respect, when dealing with errors/outliers, most input errors can be either be 
corrected or removed, whilst most outliers should be flagged as: (i) suspected outliers 
and (ii) potential (undetected) input errors. Flagged observations would then require 

further scrutiny, which should ascertain whether the observation should be: (a) 
replaced; (b) removed; or if specifically an outlier, (c) retained or possibly down-

weighted in some way (so as to provide some robust model fit or statistic of the data). 

Exploratory approaches 

The nature of the initial exploration depends on the type of data that we have.  

Initially we will consider each indicator in the dataset singly.  For nominal data a 
frequency tabulation will show whether there are values outside the allowable set 

presented in the metadata; a barplot provides a quick visual summary of the numbers 
of regions in each category.  For count data a five number summary which shows the 

upper and lower extremes, quartiles and the median will reveal whether the data are 
all positive; a histogram of the values will also give a visual indication of this as well. 
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For ratio data a five number summary gives a brief overview of the distribution, and 

a boxplot will give an initial visualisation of the likelihood that any anomalous values 
are present in the data. For time series data, a parallel coordinates plot provides an 

initial visualisation of the general patterns in the data.  

The data for the atlas relates to spatial units, so mapping the data is an obvious 

visualisation of the spatial patterns in the data. In an initial exploration of the spatial 
properties of the data quick visual summaries of the indicators are possible for 
nominal and ratio data.  For count and time series data, the spatial pattern is also 

conditioned on the underlying population at risk – as this is the likely not to be known, 
a proxy might take the form of area-normalising (dividing the counts by the area in 

square kilometres of their respective spatial units). Following the suggestions of Tufte 
(1983) we avoid the use of pie charts, or collections of pie charts which require the 
user to make comparisons both with and between the pies. It should be noted here 

that such graphics are essentially ephemeral and exploratory – they need not conform 
to ESPON layout specifications.  

Bivariate and multivariate displays take use into more complex realms which are 
domain specific.  That we can compute correlations or plot scatterplot matrices does 
not necessarily have the outcome that the resulting displays are meaningful in the 

context of the work undertaken in the Project, or helpful. We have seen some data 
expressed as principal component scores – a correlation matrix will reveal whether the 

components are orthogonal (the correlations should all be close to zero across the set 
of components). We have also seen regression residuals – these should be 
independent, centred on zero heteroskedastic, and should not exhibit non-zero spatial 

autocorrelation. However, regression residuals are not currently candidates for 
inclusion in the database, so they will be omitted from outlier checks.  

Statistical approaches 

We can divide the tests for outlier into those that are aspatial (the physical 
arrangement of the spatial units is not relevant) and those that are spatial (they take 

cognisance of the spatial arrangement of underlying areas).  

The tests to be applied depend on the nature of the indicator in question. 

Nominal data 

Nominal data consists of a number of distinct categories.  The metadata contains the 
list of valid codes used to represent the separate categories. A simple aspatial test is 

to consider whether any of the entries in the indicator have values which are not 
present in the list of valid codes.  The %in% function in R will return TRUE is an 

individual value is in the list, FALSE if not. If indicator a vector containing the list of 
codes to be tested, and valid.code is a vector of valid codes, then the R statement: 

test <- indicator %in% valid.codes 

… will create a vector, test, whose FALSE entries indicate entries in indicator with 
invalid codes. A list of the NUTS regions which contain out of range data can be 

created; assuming UnitCode is the vector of NUTS codes for the dataset undergoing 
checking, then UnitCode[!test] will be a list of the regions for which the indicator 

being tested has out of range data.  

A second test is to consider the entries in a table showing the numbers of regions in 
each category of the indicator.  If there were four categories, and an equal spread of 

100 regions in each category it would be difficult to suggest that any category was 
anomalous.  However, if there were 33 each in three categories and 1 in the fourth, 

then that category might well be regarded as unusual. In this case Grubbs test 
(Grubbs, 1950) can be employed to determine whether this category can be regarded 
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as unusually sparsely represented; a second version of Grubbs test can be used to 

determine whether there are two unusually low frequency categories in the data.  

Spatial tests for outliers, such as a Local Moran’s I test, assume that the data under 

test is continuous and is reasonably normally distributed. With nominal data this is not 
the case, and we are restricted to simple tests against the metadata.  

Ordinal Data 

Ordinal data are sometimes known as ranks – the values indicate the position of an 
observation relative to other observations on an ordered scale where the difference 

between adjacent values is unity. If there are N regions, then we would expect that 
the ranks would run from 1 to N. However, they would not necessarily belong to the 

set of positive integers, as zoned with tied ranks may be allocated an interpolated 
value: for example, if two observations both had the highest value of a variable, the 
resulting rank might be entered as 1.5 {(1+2)/2}. As these data are not ratio scale 

(that is, the ratio of the top two values is different from the ratio of the next two (1/2 
compared with 3/4) these data do not lend themselves to tests for ratio data.  The 

range of values can be checked: they should be greater than or equal to 1 and not 
greater than N. The R code would be: 

test <- indicator >= 1 & indicator <= N 

The vector test would contain TRUE for those observations whose values fell within 
the desired value range, and FALSE otherwise.  Any observations for whom the filter 

was FALSE may be in error on the tested indicator.  

If the ordinal data one or more indicators can be treated as a metric (there are certain 
conditions for the existence of a metric) then we may be able to apply some of the 

ratio based methods below.  

Ratio data: unnormalised 

Count data for spatial units provides some interesting challenges. Count data are 
either zero or a positive integer. Count data are ratio data, but when they are 
presented for spatial units, the differing sizes of the spatial units means that the 

values cannot be treated equally. Consider population as an example; if the 
population density in the NUTS regions was uniform, then the values of the population 

count would be in proportion to the area of the region. However, this is not the case, 
and the variation in population distribution means that some regions which are small 
in area would have large populations and vice versa. Urban areas generally have 

higher population densities than rural areas. In the analysis of epidemiological data, it 
is common to specify an at risk population whose underlying spatial variation 

contributes to some of the spatial variation in the incidence of the disease be studied.  
For example, if the disease of interest was leukaemia in children aged 0-14 years, 

then the at-risk population used to normalise these disease counts would be the count 
of children aged 0-14.  

Testing whether the values of the indicator are positive integers is straightforward: 

test <- indicator >= 0 & ((indicator – floor(indicator)) == 0) 

The resulting vector will have TRUE where the value of the indicator is a positive 

integer and FALSE otherwise.  The observations where this test is FALSE are worthy of 
further scrutiny.  

 

Ratio data: normalised 

We start with aspatial testing.  If we assume that the distribution of values for a 

particular indicator followed a Normal distribution, then we could compute the first 
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and second moments (the mean and variance). Approximately 95% of the data value 

could be expected to lie with ±1.96 standard deviations from the mean and 
approximately 99% of the data values would be within 2.58 standard deviations from 

the mean. Data value that were beyond ±3 standard deviations would be extremely 
unusual and worthy of examination. The problem we have with much socio-economic 

data is that, counterintuitively, it is rarely normally distributed.  Usually there is a long 
tail to the right of the distribution of values.  With income measurements, most people 
do not earn a great deal of money, and a few people earn a great deal – there are 

many poor, and just a few rich. Most houses are of moderate size, but a few are very 
large.  The tests for outliers should take this into account and make few distributional 

assumptions. Tests such as those due to Dixon, Grubbs, and Cochran make the 
assumption that our data is drawn from a normal distribution, as do several others; 
for this reason we have not used them.   

Distribution free estimates of the centre and spread of a distribution are represented 
by the median and interquartile range.  The median is that value at which 50% of the 

observations have values below the median. The quartiles divide the distribution so 
that an equal number of observations have values between the three quartiles: if 
there were 100 observations in the data set, there would be 25 observations each in 

the ranges define by the quartiles and median.  

A univariate filter is to consider the components of a boxplot, a technique developed 

by Tukey (1977). The interquartile range is the difference in values between the upper 
quartile and the lower quartile. In Tukey’s nomenclature the quartiles are referred to 
as hinges, and the difference between them as the H-spread. The values of the fences 

are 1.5 times the H-spread beyond each hinge; these correspond roughly to the 99% 
confidence interval about the median. Any observations whose values are greater than 

that of upper fence and below that of the lower fence are held to be ‘outside’: that is, 
unusual. The advantage of the median based measures is that they are robust to 
distributional skew.  

There are a number of multivariate alternatives.  A simple method might be to 
postulate a linear relationship between a particular indicator and some or all of the 

other indicators in the dataset.  In this case a linear model could be fitted and the 
residuals from this model tested.  The residual is the difference between the observed 
value of some variable and the value predicted by the model. These can be 

standardised, such that residuals with a value greater than 2.58 (1% significance 
level) might be regarded as unusually high.  This approach does require a model to be 

specified; this would require project domain specific understanding and the model 
may not be theoretically sound. A naive filter is to regress each variable of a set of 

variables on the other in turn, noting those which yield large standardised residuals. 
With m variables in a subset, we can tally for each region, the proportion of the m 
variables which yield large residuals when the are used as the response variable. A 

region where this proportion is close to 1 may be well be worthy of closer examination 
as being in some sense anomalous.  

Many univariate tests consider the distance of an object from some central point; in 
the case of the tests which assume normality, this is the mean, and we are attempting 
to decide whether an object has a value with an unusually large deviation from the 

mean. A second approach to detecting outliers in high dimensional data is consider 
whether a a multivariate measure of distance is possible. If the variables in the 

analysis are uncorrelated, then the Euclidean distance from each object from the 
mean centre, could be computed.  However, if the variables are correlated, then the 
space is not Euclidean, and some compensation is required.  Mahalonobis’ distances 

take the covariance structure of the data into account and may be used as measures 
of distance. Mahalonobis distance can be computed thus: 
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… where Mi is the Mahalobis distance for the ith object, the terms in the brackets are 

the deviances of the ith object from the mean vector and V is the covariance matrix 
for the data. We can then examine the boxplot statistics for these data. Where data 

are a mixture of quantitative and qualitative variables, a generalised version of the 
Mahalonobis distance exists (de Leon and Carrière, 2002) Fizlmoser et al (2003) have 

developed an adaptive iterative procedure for outlier detection based on robust 
estimation of Mahalonobis distances which can be used.  

A third approach would be to combine the indicators in a Principal Components 

Analysis. Principal components represent a transformation of the original data which 
attempts to capture much of the original data variance through a smaller number of 

variables. Values of the new variables can be computed from the component structure 
and are known as component scores.  The boxplot statistics approach outlined earlier 
in this section would be useful in determining whether an observation represented an 

outlier or not.  It would perhaps be reasonable to confine attention to the scores from 
the first component, as it represents that which accounts for the largest proportion of 

the original variance in the dataset indicators under test.  Again, however, it would be 
unwise to pitch some or all of the indicators in a supplied dataset into such an analysis 
unless there were sound theoretical reasons for the chosen combinations.   

Spatial approaches 

We can also take into account that fact that the data which is undergoing a check is 

tied to the spatial arrangement of NUTS units for a specific time period. An 
observation which was made by the geographer Tobler (1970) is that “everything is 
related to everything else, but near things are more related than distant things”. With 

spatial data it may not be unreasonable to expect that data values for adjacent NUTS 
regions would be similar to each other.  If this were not the case, then an observation 

which is very different from its neighbours, might be a candidate to being regarded as 
an outlier.  

Cressie (1984:33) observes that: “Analyzers of spatial data should be suspicious of 

observartions when they are unusual with respect to their neighbours”. Cressie’s 
exploratory analysis which follows this prescription uses as an example data on coal 

ash measurements from Robena Mine Property in Pennsylvania. The measurement 
locations are organised into ia regular grid which allows the use of tabular techniques 
such as Tukey’s median polish. The NUTS regions do not form a regular lattice where 

reach cell is square as has four rooks-casse neighbours, but are irregularly spaced and 
also are of a wide range of shapes and sizes.   

A simple spatial test is to compute local Moran’s I statistics and tests these. The local 
Moran’s I for a zone i is computed thus: 
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… where xi is the value of the indicator for the ith zone, wij is a matrix of weights 
(usually 1 for neighbour, 0 otherwise), and Ii is the local Moran’s I. This statistic has 

the useful property that the sum of all the local Iis is the measure of the global spatial 
autocorrelation in the data under test. If the value of the local I is negative, this 

indicates that the value of the indicator for zone I is very different from those of its 
immediate neighbours, and this may well suggest the presence of an outlier. 



 
 12 

A second spatial test is due to Hawkins (1980).  The idea is similar to the Moran 

test, but the form of the test statistic is somewhat different: 

2

2

)1(

)(

sn

xxn
H i

i



  

In the formula n is the number of neighbours with x-bar is the arithmetic mean of the 
values in the neighbouring regions. The s2 term is the vaergae variance for 

equvalently sized neighbourhoods over the sampling space. In our implementation the 
locally weighted summary statistics are based on a bi-square kernel with a fixed local 
sample size of 0.1 of the total number of regions in the dataset. The test statistic is 

distributed as a 2 with 1 degree of freedom, so that the 5% critical value is 3.84, and 
the 1% critical value is 6.64. In this test the values in all regions are considered to be 
suspects (Rossi et al, 2002). Krige and Magri (1982) show how Hawkins’ test may be 

applied to gold mining data.  

 

Classification based approaches 

Another approach to the identification of univariate or multivariate outliers is provided 
by a classification based approaches. Classification methods, sometimes refrred to as 

cluster analysis methods, attempt to group the observations into a small number a 
clusters basedf on measurements of the similarity or dissimilarity between the 

observations.  There are a wide number of methods and a wide number of distance 
measurements.  A similarity measure increases in value, the more similar two objects 
are, and vice versa. Euclidean distances represent measure of dissimiliarity, as do 

Mahalanobis’ distances.  

A useful measure of similarity is provided by Gower’s (1971) similarity coefficient. This 

is a general purpose measure which provides measures of dissimilarity for binary, 
nominal, ordinal and ratio data.  The coefficient is defined: 
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… where Sij is the similarity between objects I and j, measured over k variables. 
Lowercase is the contribution of the kth variable, and w is 1 is the comparison on the 

kth variable is valid.  

For binary (0/1, yes/no, presence/absence) data Gower’s measure is defined as: 

 Value of variable k 

Object i 1 1 0 0 

Object j 1 0 1 0 

s 1 0 0 0 

W 1 1 1 0 

 

If both objects have the value 1, then s is 1, 0 otherwise; if either object has the 
value 1, then w is 1, 0 otherwise.  Gower extends this for nominal data, so that if both 

objects are in the same group then s is 1.  For ordinal and ratio data the definition is 
sijk is:  
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


1  

… where k is the range of the kth variable.  

Torgo (2007, 2010) uses this dissimilarity measures as the basis for a classification 

based method which gives the ‘outlierness’ for a set of data.  This ranking is based on 
the trajectory of an object during an agglomerative hierarchical clustering method.  

One of the outputs is the probability than an object is a multivariate outlier.   

Which test? 

We have outlined a number of approaches to detecting outliers.  Some are specific to 

a particular type of data, others are general.  Some are mechanical, others are 
statistical.  We can deal with one attribute at a time or consider several 

simultaneously.  Penny and Joliffe (2001) suggest that relying on a single technique is 
unwise, and that the analyst should consider the results from several tests.  Where 

possible we follow this prescription.  

Robust Methods 

A number of the outlier detection methods are based on statistics which assume 

underlying normality of the data. As Riply (2004) points out, outliers can play havoc 
with such statistics. The mean is a case in point: as any data value approaches ∞, 

then the mean approaches ∞ as well.  The median, on the other hand is little affected 
by the moving of a single value to  ∞.  Indeed, the median can tolerate up to 50% of 
the observations being gorssly in error, where for the mean this breakdown point is 

0%.  If the distribution is not normal, the mean can be a poor estimator of the central 
tendency of the distribution. In recent years there has been a development of robust 

methods, which are less influenced by outliers than standard statistical approaches.  
Counter-intuitively, this makes them useful tools for detecting outliers.  

A simple robust extention of the mean is the Winsorised mean.  In the computation 

of this statistic, the largest k+1 values are replaced by the kth value, and the smallest 
k+1 values are replaced by the kth smallest value. A similar statistic is the trimmed 

mean, in which the k largest and k smallest values are removed, and the divisor is n-
2k. However, if the distributions are not symmetric, neither estimate will be an 
ubaissed estimate of the tryue mean.  

An alternative is provide by the median, and a range of statistics based with their 
origins in Tukey (1974).   The boxplot statistics have already been introduced – these 

define the salient features of the boxplot: the median, the quartiles (and the 
interquartile range) and the whiskers (who extend to the median±1.5*interquatile 
range).  If the distribution is normal, the whiskers encompass all but the upper and 

lower 0.36% of the distribution.  Observations whose values lie beyond those of the 
whiskers can be considered to be outliers.  

It is tempting to remove the outlying observations, but, again, as Riply (2004) points 
out: a shapr decision to remove an observation is wasteful of data, identiffying 
outliers is difficult in highly structured data, and rejecting outliers means that 

estimates of the variance will be underestimated. Alternatives approaches are 
attractive in these situtations.  

A univariate filter is provided by the boxplot and its associated statistics.  For 
bivariate data, the bagplot provides an extension into two dimensions. The bagplot 
relies on the Tukey median (a two-dimensional version of the median) and the 

halfspace depth (a two dimensional equivalent of the interqartile range).  The bag is 
the area around the median containg data with the highest depth, and the fence 
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inflates the bag by a factor of 3. Observations beyond the fence are considered to be 

outliers (Hubert and van der Vekken, 2002). The median, bag boundary and fence 
boundary can be visualised on a scatterplot. For a series of variables, bagplots can 

replace the scatterplots in a scatterplot matrix display, although the aberrant cases 
are perhaps more easily caught by the computations required for for bagplot, and 

used in the weight of evidence estimation for the dataset under test. 

** We have implemented the boxplot as part of the standard univariate suite of 
tests for ratio and count data 

** We have implemented the bagplot as part of the bivariate suite of tests – 
outliers are extracted from the m(m-1)/2 possible comparisons of m ratio or 

count variables. 

In the case of multivariate data, we require robust versions of regression and 
principal components analysis. A number of approaches to the estimation of 

robust regression have been proposes since the least median of squares appeared 
in the 1980s.   In a robust estimate the outlying observations are not discarded, but 

are included in the analysis. The regression estimator includes a weighting function to 
ensure that the influence of the most extreme cases is minimised; the algorithm in R 
uses a technique known as the M-estimator, which is due to Huber (1981). As the 

robust regressions do not have standardised residuals in the manner of those that are 
available for Gaussian linear regression, potential outliers in the regression residuals 

can be identified by inspection of the boxplot statistics.  

** We have implemented a robust regression as part of the bivariate suite of 
tests.  Outliers are determined by the computation of boxplot statistics on the 

raw residuals 

Robust principal components analysis provides an alternative to the standard 

principal components analysis (Hubert, Rousseeuw, and Vanden Branden, 2003). 
Recall that the eigenvectors are based on maximising the variance and decomposing 
the covariance matrix .Both the variance and covariance are infleunced by outliers.  

The effect is that the first components (which accounts for the highest variances) are 
attracted towards outlying observations, and may not capture the variation in the 

other observations (Hubert, Rousseeuw and Vanden Branden, 2003).  The goal of the 
robust method is the minimise the effects of the outlying observations through 
downweighting, without removing any of the aberrant data cases.  

Robust spatial versions of the univariate, bivariate and multivariate statistics still 
represent something of a research frontier. Liu et al (2001) use the Jacknife to create 

an interpolation residual based index for outliers; however, their methods is coupled 
to the ArcINFO GIS software.  They also note that for smal datasets the robust 

estimates of the summary statistics can only be estimated with sufficient 
observations.  

Robust versions of kriging-based geostatistical methods also exist. However, 

geostatistical methods largely involve the prediction of the values of an indicator at 
locations where samples have not been taken. For example, samples of air quality 

may have been taken at a variety of locations around a city, and geostatistical 
methods used to estimate the levels of pollutants at the mesh points of a regular 
lattice. This involves the estimation of a variogram which gives a picture of the spatial 

covariance structure of the data. The spatial weights for the estimation are drawn 
from a theoretical model fitted to the empirical variogram. Some of the procedure can 

be automated, but for the best estimates, a degree of interaction is desirable. 
Diagnostics for geostatistical models potentially involve interaction and are perhaps 
less suited to an automated environment (Bradley and Haslett, 1992). At the moment, 

the degree of expertise required to use geostatistical methods renders it a specialist 
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subject for the ESPON database. However, this does not preclude their use in the 

outlier detection process.  
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Towards an implementation of the outlier check  

The previous sections of the Technical report have outlined various methods for 
checking data for the presence or otherwise of anomalous values. In the M4D data 

flow model the outlier check takes place at the NCG following syntaxic and semantic 
checks on the metadata and the data.  

In designing an implementation of the outlier check process, the desire has been (a) 
to keep interference with the data in the spreadsheet to a minimum and (b) the keep 
the amount of coding for each dataset to a minimum. Outlier checking is not a 

completely automated process, and a certain amount of interaction will be needed to 
draw conclusions from the check. We have already observed that outliers may arise 

from incorrect entry of the data or mistakes in computation; outleirs may also arise 
because some NITS regions are generalised very different from their neighbours or 
smaller units. This may require interaction with the supplier if we uncover data which 

might be anomalous.  The stark and potentially accusatory nature of a printout of the 
R code output will require some context, and some interpretation.  To be an outlier is 

a matter of degree, and that importance degree of outlyingness is something for the 
M4D team and the data supplier to agree on.  

We have decided to implement the checking functions in the R system (R DCT, 2005). 

R is an open source environment with a rich body of functions for data manipulation 
and statistical analysis. In recent years, these have been added to with several 

packages for handling and analysing spatial data. Unlike SPSS the analyst primarily 
communicates with R through a command line interface: the R console. This demands 
a familiarity with the R language itself, and the syntax, structure and 

interrelationships between the various functions which are available.  

 

 

 

 

 

 

 

 

 

 

 

 

R will not do anything until instructed, and the > prompt will remain until the user 

enters an R instruction.  As an example, to read a comma-separated-variable file into 
a data frame x, the user might enter: 

X <- read.csv(“social_class_nuts3.csv”) 

… the result of which will be to transfer the contents of the file social_class_nuts3.csv 
into the data frame x. The rows in the data frame will correspond to the observations 

(NUTS3 regions in this case) and the columns to the indicators or variables (measures 
of social class).  
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Clearly entering the individual instructions to copy the data from the Excel 

spreadsheets which will be supplied as the data interchange medium and undertake 
the analysis would be an onerous task, so R permits the creation of functions which 

permit various related tasks to be group together as effectively a new instruction 
written in the R language. The new functions can be grouped together in text files. To 

invoke the instructions in a file the source() command is used, as in the following 
example. 

To achieve the goals for the outlier check we have written a hierarchical set of 

checking functions which a supplied with appropriate control information. We have 
experimented with extracting this control information from the metadata in the 

spreadsheets, but the most reliable approach has been to code it by hand.  
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Each spreadsheet that is supplied is composed of four separate worksheets 

 

Dataset  description of the dataset, project and supplier 

Indicator  metadata concerning the individual indicators 

Source  information on the source of the data 

Data   the data itself: rows represent the observations; 

   Columns represent the indicators.  Each indicator 

   appears as a column pair, the first containing the data 

   values and the second a code linking to the Source metadata  

 

The spreadsheet is read directly by R and the contents of each worksheet copied into 
a separate dataframe. No manual intervention is required. The control information is 
obtained from a prior manual inspection of the spreadsheet. There are 9 main piece of 

control information. 

 

Variable Content 

DataFolder Points at the location of the folder which contains the spreadsheet to 

be checked. 

DatasetName The name of the Excel spreadsheet in DataFolder 

NUTSLevel The level of the NUTS regions. Currently {0 | 1 |2 | 3} but this will be 
expanded as different areal units are encountered (UMZ, Corine 

regions &c) 

NUTSDate Date of the spatial units – there are different shapefiles for the 

different NUTS epochs 

DataColumns A vector of numeric indices which point to the columns which contain 

data for checking 

DataTypes A vector of data type indicators (R: ratio, N: Nominal in this case). 

This vector has the same number of elements as DataColumns 

MVColumns A vector indicating which variables will be used in the multivariate 

checking (T: yes, F: no). Again, this vector is the same length as the 
DataColumns Vector 

Cn A vector of the allowable codes for the nth variable if this is nominal 
data.  In the example column 2 and 7 are typologies with 4 codes for 
the first and 7 codes for t he second) 

TestCodes This is an R list used to transfer the typology codes for the nominal 
variables.  This list is the same length as the DataColumns vector.  

 

The ‘Local Housekeeping’ section supplies pointers to the locations in Dropbox where 

we are working.  Three researchers in the NCG have been collaborating on the 
development of the data check process, and we have use Dropbox to coordinate our 

activities.  The location of the Dropbox folder depends on the version of Windows 
being used, and the username of the researcher. This information is used to extract 
the spreadsheet, NUTS indices and any geometry files. The rest of the R code and 
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functions are in two linked files – the first (Data_Check_Main_tempate.R) is needed to 

begin the data check procedure.  

Data Check Function 

The main driver code is contained in the file Data_Check_Main_Template.R. It 
initialises the check, ensures that the correct geometries are loaded, carries out some 

initial consistency checks, and invokes the various checking strategies, passing ht 
control information where necessary. 

 

The first section loads the NCG function library into R (in the file 

DataCheckFunctions.R), loads the package libraries used in these functions, and then 
prints a banner to indicate the start of the checking process. The banner also prints 

the date and time that the check was run, if this is needed for subsequent audit 
purposes.  

 

The location of the StartFolder is used by the M4D_Folders to return a lsit of points to 
the locations of the folders for (a) the data for checking, (b) the NUTS shapefiles and 

(c) the NUTS lookup tables. The full dataset name included not just its name, but the 
complete path to its location.  This is the file that will be read into R.  
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If the control information indicates the level and date for the NUTS units.  This section 
of the code is responsible for copying the relevant geometry shapefile into the internal 

data structure used for spatial data in R: this structure is known as a Spatial Polygons 
data Frame, or SPDF. The SPDF contains not only the geometry data which describes 
the boundaries of the NUTS polygons but also some attribute data including the NUTS 

code, the polygon area, the NUTS level and date, and the name of the NUTS region. 
Some of the names are in locale specific script – not all this translate into the internal 

structure successfully, and we are investigating why this is so and what needs be 
undertaken as a workaround.  

The loadPolyShapefile function returns not only the SPDF object, but also the list of 

NUTS codes which are present, and counts the number of NUTS regions for the 
combination of level and date. A second function retrieves a corresponding list of 

NUTS codes and name for the level/date.  
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The GetData function invokes some low level ODBC functions which open the Excel 
spreadsheet, copy the worksheets into R data frames, and closes the spreadsheet.  No 
manipulation beyond the sqlFetch instruction has taken place, so some data 

manipulation is required to reshape the dataframe for the data checking functions.  

Some summary information to identify the dataset and the indicators it contains is 

extracted from the metadata.  The reshaping consist of extracting the NUTS codes, 
date and level, and the columns which contain the data and copying them into a new 
data frame. In the spreadsheet the first row is used for the name of the indicator 

column. However, for some data this is not unique.  The second and third rows may 
contain one or more dates, so these are concatenate with the corresponding indicator 

name to give a unique column name. The first three rows are omitted from the data 
frame, and the column names in data frame are then taken from the unique names 
which have been created in this step.  

The indicator names are written to a vector – this will be sued in the subsequent 
sections for the data checking, and the corresponding DataType and TestCodes lists 

used to select and operate the appropriate checking procedures.  The subset of 
columns to be used for the multivariate data checked is also created in this step.  
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Not all projects use the complete set of NUTS regions for a given level/date.  Those 
which are not present are identified and removed from the Spatial Polygons Data 

Frame prior to the final data checking step.  

It sometimes happens in data collation that a value for a particular region is not 
available at the time of the analysis or for the duration of the project. The NA 

combination is often used to signal a missing value, although in some cases a cell is 
left unfilled.  R creates an implicit NA for the empty cells.   It is conventional to 

organise the omission of such data in computations.  For univariate analysis this can 
be done on an indicator by indicator basis, although it does mean that potentially 
different samples are used for different indicators. With multivariate analysis, an 

record with missing data in any candidate cell is omitted from the analysis: this is 
known as casewise deletion.  

The final step is the casewise removal of any records that have missing data across 
the complete range of indicators. We have encountered one or two cases in the data 

we have seen. The removal is both from the ‘aspatial’ data frame and the spatial data 
frame.  
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The data check proper consists of two parts: an exploratory analysis of the indicators 

in the data and an a confirmatory analysis to identify any potential outliers. The 
exploratory analysis includes the provision of appropriate summary statistics and 

tabulations, bivariate correlations, boxplots of the ration/count data, barplots of the 
typology data, and maps of all the indicators. The confirmatory analysis applies a 
battery of tests: univariate, spatial, and multivariate.  The final action is to print a 

summary of the results in the creation of the weight of evidence for a region being 
outlying in some sense. .  

 

The final action is to write the summaries to a file, and print a completion banner. The 
banner signals that the data check run have completed successfully and prints the 

time that this occurred.  This is potentially useful for audit purposes; however, the R 
functions will occasionally terminate prematurely if an unexpected data characteristic 
has occurred.  
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Data check function library 

The library of data check functions includes the intermediate level functions driving 

the univariate, spatial and multivariate checks, as well a low level function to invoke 
particular tests.  At the time of writing this consists of some 900 lines of R instructions 

and associated comments.  

While is it based on the R code created by Paul Harris for the Phase I project, the 
library has been created from scratch in accordance with the redesign of the outlier 

check in mind.  Further functions will be added to enlarge the range of possible tests.  

Documentation of this library is in progress.  Copies can be made available through 

the ESPON Coordination Unit.  
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Example data check session 

An example session is shown using some example data from an ESPON Project.  The 
dataset was supplied by the Coordination Unit and contains examples of typology and 

ratio date for NUTS3 regions in their 2006 version. 

Within the dataset there are 7 indicators: two a typology variables; 4 are principal 

component scores, and one consists of unstandardised residuals from a regression 
model. Current ideas about M4D are that regression residuals and principal 
component scores are perhaps unhelpful as indicators; the team would rather the 

constituent variables were stored, allowing an analyst to replicate the analysis 
undertaken by the project.    

The control information shown in the previous section was derived from this dataset.  
There are some observations we would make concerning the data.  First, regression 
residuals should be homoskedastic: they should be random, have a mean of zero, and 

be independently and identically distributed; furthermore any random sample should 
have the same variance.  As they apply to spatial units, they should not exhibit any 

spatial autocorrelation.  We have not checked for any misspecification in the model 
structure as revealed in the residuals, although the team would be able to offer 
statistical advice to any project using regression methods.  

Second, four of the variables are principal component scores. We know little about the 
variables which were subject to the principal components analysis. We would assume 

that the components shown have eigenvalues which are greater than 1; as we 
examine the correlation structure of the multivariate data we can check for any 
departure from orthogonality.  However, the database team would rather have the 

original variables – this allows any other analyst to replicate the PCA, or use a 
different form of PCA.  

Comments on the output will appear in italic. 

 

The first section displays the banner: this shows the time and date that the quality 

check was made. 

+===============================================================+ 

###                                                           ### 

### M4D: Data Quality Check                                   ### 

###                                                           ### 

### National Centre for Geocomputation                        ### 

### National University of Ireland Maynooth                   ### 

### Maynooth, Co Kildare, Ireland                             ### 

###                                                           ### 

+===============================================================+ 

Run on:  Thu Jun 28 17:19:30 2012  

 

The next section presents the information from, first, the Dataset worksheet, and 
second, some of the metadata from the Indicator worksheet. It would be a desirable 
development to be able to pick the code lists for the typology variables from the 

metadata directly without having to include them in the control information.  This 
should be a relatively simple task.  

 

+===============================================================+ 

### Dataset identification                                    ### 

+===============================================================+ 

Dataset name:        Territorial cooperation and its determinants  

Project:             XXXXX 

Abstract:           Typology type of data related to territorial cooperation  

Unique Resource Identifier  XXXXX_terr_coop_det_2012_v1  
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+===============================================================+ 

### Summary information from the metadata                     ### 

+===============================================================+ 

Indicator Name          Data Type     Data Values                       

RES_DIS_RAN             float         km                                

DET_TYP                 integer       types 1-4                         

PCA_1_CORE              float         none                              

PCA_2_ATTRACT           float         none                              

PCA_3_PROBLEM           float         none                              

PCA_4_METRO             float         none                              

REG_TYP                 integer       types 11, 12, 21, 22, 23, 31, 32  

 

We next check the list of NUTS units in the Data worksheet against the list of NUTS 
units extracted from the lookup list. A number of studies take a sample of NUTS units, 

others omit some of the detached regions. In this example, Ceuta and Melilla are 
omitted, as are the French territories of Guadeloupe, Martinique, Guyane and 
Réunion. The Azores likewise were not included in the study. These are not errors, but 

they are pertinent information for this particular subset of the EU regions.  

 

MISSING REGIONS in the Data for Checking 

Regions in the NUTS list not in the data for checking 

     Code                       Name Level 

781  ES63   Ciudad Autónoma de Ceuta     2 

783  ES64 Ciudad Autónoma de Melilla     2 

956  FR91                 Guadeloupe     2 

958  FR92                 Martinique     2 

960  FR93                     Guyane     2 

962  FR94                    Réunion     2 

1456 PT20 Região Autónoma dos Açores     2 

 

The regions present in the spreadsheet are also checked against the list of regions in 
the shapefile.  There are extra regions in the shapefile. Macedonia is an example it 

submitted its application for EU membership in 2004, and has been a candidate for 
accession since 2005. The process of accession has yet to be completed, so as it had 

accession status, the boundaries are present in the shapefile. Note that this seven 
units noted above are also included in the list of omits. The other omitted countries 
are Croata (HR), Liechtenstein (LI) and Turkey (TR). These regions will be removed 

from the shapefile representation in R.  

 

Regions in the Shapefile not in the data for checking 

ES63 ES64 FR91 FR92 FR93 FR94 HR01 HR02 HR03 LI00 MK00 PT20 TR10 

TR21 TR22 TR31 TR32 TR33 TR41 TR42 TR51 TR52 TR61 TR62 TR63 TR71 

TR72 TR81 TR82 TR83 TR90 TRA1 TRA2 TRB1 TRB2 TRC1 TRC2 TRC3 

 

The first section of the univariate exploratory analysis is driven by the datatypes.  For 
the ratio data the check returns a five number summary.  These mark summary 
measures of the distribution.  We can see that the regression residuals 

(RES_DIS_RAN) are not standardized, and may be skew (the mean is some distance 
from the median). The principal components are distributed around a mean of about 

zero, and are not too skew.  The last variable is a typology with seven categories.  
There are appears to be a single instance of 0 has been entered as a category value.  
This is not an obviously correctable error, and we would check this with the data 

supplier.    

 

+===============================================================+ 

### Exporatory data summaries                                 ### 

+===============================================================+ 
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Variable:        RES_DIS_RAN  

Data Type:       R  

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

-957.800 -256.500  -35.750    3.704  196.600 2445.000  

----------------------------------------------------------------- 

Variable:        DET_TYP  

Data Type:       N  

  1   2   3   4  

 54  49 105  69  

Categories found are:  1 2 3 4  

----------------------------------------------------------------- 

Variable:        PCA_1_CORE  

Data Type:       R  

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

-2.0830 -0.5734  0.3008  0.1183  0.8610  2.3000  

----------------------------------------------------------------- 

Variable:        PCA_2_ATTRACT  

Data Type:       R  

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

-1.92100 -0.68040 -0.04285  0.04166  0.61350  4.73600  

----------------------------------------------------------------- 

Variable:        PCA_3_PROBLEM  

Data Type:       R  

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

-3.32800 -0.53000 -0.05204 -0.02480  0.52280  3.32100  

----------------------------------------------------------------- 

Variable:        PCA_4_METRO  

Data Type:       R  

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

-1.24800 -0.54670 -0.24530 -0.01657  0.18830  6.52000  

----------------------------------------------------------------- 

Variable:        REG_TYP  

Data Type:       N  

 0 11 12 21 22 23 31 32  

 1 31 21 26 39 16 54 89  

Categories found are:  0 11 12 21 22 23 31 32  

----------------------------------------------------------------- 

 

In the next section are some bivariate measures – Pearson product moment 
correlation coefficients.  These need some interpretation given our knowledge of the 

types of data that are present in the file. The table below presents the correlations 
between every pair of variables in the multivariate list. The correlations are in the 

lower triangle of the matrix; the leading diagonal is blank [the correlations would be 
1], and the upper triangle presents the p values for the hypothesis that the coefficient 

is not significantly different from zero.  

As expected the principal component appear to be orthogonal – the correlations are 
close to zero, and the p values are all greater than 0.05. The regression residuals are 

also uncorrelated with the principal components – this might be entirely by chance, or 
it may be that the y variable is included in the first component.  

 

+===============================================================+ 

### Bivariate data summaries                                  ### 

+===============================================================+ 

 

Bivariate correlations and p-values 

Correlations in the lower triangle and p-values in the upper triangle 

               RES_DIS_RAN  PCA_1_CORE PCA_2_ATTRACT PCA_3_PROBLEM PCA_4_METRO 

RES_DIS_RAN                 0.01766585    0.47513844   0.529419978   0.9277271 

PCA_1_CORE     0.142468956                0.18735514   0.460380033   0.5985053 

PCA_2_ATTRACT  0.043083622  0.07945161                 0.752310689   0.8303181 

PCA_3_PROBLEM  0.037944414 -0.04453479   -0.01904662                 0.8948981 
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PCA_4_METRO   -0.005474645 -0.03177309   -0.01293360   0.007973589    

 

The exploratory analysis is accompanied by appropriate visualisations. For the ratio 
variables we use boxplots, and for the typology variables we use barplots. The 

principal components behave as expected, although those later ones that account for 
less of the variance show a tendency to outlying observations.  The regression 

residuals appear to have  a small of observations in the right tail which will be 
identified as outliers. If they are not outliers on several of the other tests, then they 
will have little evidence in favour of their being consistently unusual. The display 

below shows the R GUI. 

 

Barplots are used for the typology variables. In the case of REG_TYP the single value 

of zero seems unusual. This is not one of the allowable codes for this variable.  
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The scatterplot matrix presents plots for every combination of the variables in the 
multivariate list. These bivariate relationships will be examined again using the 
bagplot.  The tendency for the fourth principal component to have uusually large 

values in its right tail will be noticed. The plots also help to highlight the orthogonality 
of the components.  If any variable paris were strongly related this would be relatively 

clear from the plots – we might suggest to the data supplier that one of the variables 
is replaced by another choice.  
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The maps are produced automatically on groups of four.  Those which display 
continous data have a standard key with 11 classes and a blue-red colour scale 

chosen from the ColorBrewer range of palettes. Those plots which display typology 
variables have another palette chosen from the ColorBrewer set – this highlights the 

visual differences between the classes. The shapefile has been reduced from its 
original extent by the removed of those regions for which there is no data.  
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Following the exploratory summaries, we begin the check for outliers.  While for an 
individual test a region might be listed as a outlier, unless it is consistently identified 
across the univariate, spatial and multivariate tests as such, it is unlikely to be an 

outlier. We note first that there are a few regression residuals with large positive 
values.  However, without details of the regression model itself, it would be unwise to 

drawn too many conclusions at this stage.  

+===============================================================+ 

### Univariate Exception tests                                ### 

+===============================================================+ 

Ratio Data Check for Indicator:  RES_DIS_RAN  

 

Regions with unusual boxplot data 

NUTSCode    Value               NUTS Region Name    

CH07        -957.766611449259   NA      

GR42        1151.37411218726    ??t?? ???a??    

IE01        1015.74777438423    Border, Midland and Western 

IS00        2444.80020223689    NA      

NL31        923.489129622647    Utrecht     

PT17        1145.92495046647    Lisboa      
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UKM6        1138.36615331514    Highlands and Islands   

UKN0        1569.51766679875    Northern Ireland    

------------------------------------------------------------------- 

Nominal data check for Indicator:  DET_TYP  

Valid codes:  1 2 3 4  

 

Frequency Tabulation 

  1   2   3   4  

 54  49 105  69  

 

Anomalous data values found... 

NUTSCode                   Value                      NUTS Region Name           

ES70                       NA                         Canarias                   

PT30                       NA                         Região Autónoma da Madeira 

------------------------------------------------------------------ 

 
The checks on the component scores follow.  There are some problems with 

the representation of characters with diacritics. Note that the components 
which account for lower proportions of the variance show a tendency to have 

more distributional outliers. 
 

Ratio Data Check for Indicator:  PCA_1_CORE  

------------------------------------------------------------------- 

Ratio Data Check for Indicator:  PCA_2_ATTRACT  

 

Regions with unusual boxplot data 

NUTSCode         Value            NUTS Region Name 

CY00             3.13887          ??p??? / Kibris  

ES53             4.73611          Illes Balears    

GR22             3.44715          ????a ??s??      

GR42             3.69832          ??t?? ???a??     

GR43             3.02881          ???t?            

PT15             2.93365          Algarve          

------------------------------------------------------------------- 

Ratio Data Check for Indicator:  PCA_3_PROBLEM  

 

Regions with unusual boxplot data 

NUTSCode               Value                  NUTS Region Name       

BG41                   -3.32768               ??????????             

DE30                   3.32121                Berlin                 

DE80                   2.17177                Mecklenburg-Vorpommern 

ES43                   2.15609                Extremadura            

ITF3                   2.20895                Campania               

ITF6                   2.47295                Calabria               

ITG1                   2.5697                 Sicilia                

RO32                   -3.14105               Bucuresti - Ilfov      

SK01                   -2.65745               Bratislavský kraj      

------------------------------------------------------------------- 

Ratio Data Check for Indicator:  PCA_4_METRO  

 

Regions with unusual boxplot data 

NUTSCode            Value               NUTS Region Name    

AT13                4.40635             Wien                

BE10                5.28288             Région de Bruxelles-Capitale  

CZ01                3.80599             Praha               

DE30                5.86853             Berlin              

DE50                1.90913             Bremen              

DE60                3.73206             Hamburg             

DE71                1.43234             Darmstadt           

FR10                2.00554             Île de France       

GR30                1.54061             Att???              

HU10                1.52142             Közép-Magyarország  
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ITE4                1.42343             Lazio               

PL12                1.2921              Mazowieckie         

PT17                1.37259             Lisboa              

RO32                1.8552              Bucuresti - Ilfov   

SK01                1.41877             Bratislavský kraj    

UKD3                1.39142             Greater Manchester   

UKG3                1.52796             West Midlands       

UKI1                6.52024             Inner London        

UKI2                2.53976             Outer London        

------------------------------------------------------------------- 

 

The data check against the valid list of codes in the metadata reveals a code of 0 with 
a frequency of 1.  This may well be an data entry error and can be quickly checked 

with the supplier.  

 

Nominal data check for Indicator:  REG_TYP  

Valid codes:  11 12 21 22 23 31 32  

 

Frequency Tabulation 

 0 11 12 21 22 23 31 32  

 1 31 21 26 39 16 54 89  

 

Anomalous data values found... 

NUTSCode                   Value                      NUTS Region Name           

ES70                       NA                         Canarias                   

MT00                       0                          Malta                      

PT30                       NA                         Região Autónoma da Madeira 

------------------------------------------------------------------- 

 

The spatial tests follow.  The score runs from 1 – not an outlier on any test to 0 – an 

outlier on all tests. Those areas for which over half of the tests suggest outliers are 
listed.  

 

+===============================================================+ 

| Spatial exception tests                                       | 

+===============================================================+ 

 

RES_DIS_RAN   PCA_1_CORE    PCA_2_ATTRACT PCA_3_PROBLEM PCA_4_METRO   

 

### Potential spatial exceptions  ### 

NUTSCode       Value    NUTS Region Name        

AT32           0.4      Salzburg       

AT33           0.2      Tirol          

BG32           0.4      ??????? ?????????       

CH05           0.4      NA    

CZ05           0.4      Severovýchod   

CZ07           0.4      Strední Morava          

CZ08           0.2      Moravskoslezsko         

ES43           0.4      Extremadura    

ES61           0.4      Andalucía      

ITD1           0.4      Provincia Autonoma Bolzano/Bozen 

PL22           0.4      Slaskie        

PL51           0.4      Dolnoslaskie   

PL52           0.4      Opolskie       

RO31           0.4      Sud - Muntenia          

RO41           0.4      Sud-Vest Oltenia        

SK02           0.4      Západné Slovensko       
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The final set of tests are the mutlivariate tests. Again a score running from 1 (not an 

outlier) to 0 (almost certainly an outlier) summarises the results from the tests. It is 
noticeable that of the regions tested, most of the outliers are major cities (Vienna, 

Brussels, Berlin, London), or in the case of Iceland, the nation.  The others include the 
Balearic Islands and the Aegean Islands.  

 

+===============================================================+ 

### Multivariate Exception tests  ### 

+===============================================================+ 

### Potential multivariate exceptions  ### 

NUTSCode            Value               NUTS Region Name    

AT13                3.2                 Wien                

BE10                3.2                 Région de Bruxelles-Capitale 

DE30                2.5                 Berlin              

ES53                3.2                 Illes Balears       

GR42                2.6                 ??t?? ???a??        

IS00                2                   NA                  

UKI1                3.2                 Inner London        

 

The resulting scores provide little evidence, apart from the apparently erroneous value 

of 0 for the REG_TYP variable, that there are any outliers of note in this dataset.  
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