

How is climate change affecting the Baltic Sea?

Prof. Dr. Markus Meier

Leibniz Institute for Baltic Sea Research Warnemünde (IOW),
Swedish Meteorological and Hydrological Institute (SMHI),
Chair of the Baltic Earth Science Steering Group,
Co-Chair of the Expert Network on Climate Change (EN CLIME),
markus.meier@io-warnemuende.de

HELCOM-Baltic Earth collaboration

BALTEX/Baltic Earth Assessments of Climate Change for

the Baltic Sea Basin:

BACC Author Team (2008) - book

BACC II Author Team (2015) - book

BEARs (2022) - special issue in

Earth System Dynamics

https://doi.org/10.5194/esd-2021-67 Preprint. Discussion started: 19 August 2021 © Author(s) 2021. CC BY 4.0 License.

Climate Change in the Baltic Sea Region: A Summary

- 2 H. E. Markus Meier^{1,2}, Madline Kniebusch¹, Christian Dieterich^{2,+}, Matthias Gröger¹, Eduardo
- 3 Zorita³, Ragnar Elmgren⁴, Kai Myrberg^{5,6}, Markus Ahola⁷, Alena Bartosova², Erik Bonsdorff⁸
- 4 Florian Börgel¹, Rene Capell², Ida Carlén⁹, Thomas Carlund¹⁰, Jacob Carstensen¹¹, Ole B.
- Christensen¹², Volker Dierschke¹³, Claudia Frauen^{1,14}, Morten Frederiksen¹¹, Elie Gaget^{15,16},
 Anders Galatius¹¹, Jari J. Haapala¹⁷, Antti Halkka¹⁸, Gustaf Hugelius¹⁹, Birgit Hünicke³, Jaak
- 7 Jaagus²⁰, Mart Jüssi²¹, Jukka Käyhkö²², Nina Kirchner¹⁹, Erik Kjellström², Karol Kulinski²³,
- 8 Andreas Lehmann²⁴, Göran Lindström², Wilhelm May²⁵, Paul A. Miller^{25,26}, Volker Mohrholz¹,
- 9 Bärbel Müller-Karulis²⁷, Diego Pavón-Jordán²⁸, Markus Quante²⁸, Marcus Reckermann²⁹,
- 10 Anna Rutgersson³⁰, Oleg P. Savchuk²⁷, Martin Stendel¹², Laura Tuomi¹⁷, Markku Viitasalo⁵,
- 11 Ralf Weisse³, Wenyan Zhang³
- 12 Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research
- 13 Warnemünde, Rostock, Germany
- 14 ²Research and Development Department, Swedish Meteorological and Hydrological Institute, Sweden
- .5 ³Institute of Coastal Systems-Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- 16 ⁴Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- 17 Marine Research Centre, Finnish Environment Institute, Finland
- 18 6Marine Research Institute, University of Klaipeda, Lithuania
- 9 Swedish Museum of Natural History, Stockholm, Sweden
- 20 8Environmental and Marine Biology, Åbo Akademi University, Finland
- Ocalition Clean Baltic, Uppsala, Sweden
- 22 ¹⁰Information and Statistics Department, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
- 23 ¹¹Department of Bioscience, Aarhus University, Roskilde, Denmark
- 24 ¹²National Centre for Climate Research, Danish Meteorological Institute, Copenhagen, Denmark
- 25 ¹³Gavia EcoResearch, Winsen (Luhe), Germany
- 26 ¹⁴Deutsches Klimarechenzentrum, Hamburg, Germany
- 27 ¹⁵Department of Biology, University of Turku, Turku, Finland
- 28 ¹⁶International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- 29 ¹⁷Finnish Meteorological Institute, Helsinki, Finland
- 30 18 Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- 31 ¹⁹Department of Physical Geography, Stockholm University, Stockholm
- 32 20Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- 33 ²¹Pro Mare, Estonia
- 34 ²²Department of Geography and Geology, University of Turku, Finland
- 5 ²³Institute of Oceanology, Polish Academy of Sciences, Gdansk, Poland
- 36 ²⁴GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- 37 25Centre for Environmental and Climate Science, Lund University, Lund, Sweden
- 3 26Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- 39 ²⁷Baltic Sea Centre, Stockholm University, Stockholm, Sweden
- 40 28 Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden,
- N-7485 Trondheim, Norway
- 42 ²⁹International Baltic Earth Secretariat, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
- 43 30Department of Earth Sciences, Uppsala University, Sweden
- +Doonsol

- Knowledge gain since 2013 based upon peerreviewed papers
- 33 parameters

 (atmosphere, cryosphere, land, terrestrial biosphere, ocean and sediment, marine biosphere), no anthroposphere
- Past, present and future climate changes
- 47 scientists, 133 pp, 34 figures, 10 tables, > 812 references
- https://esd.copernicus.org /preprints/esd-2021-67/

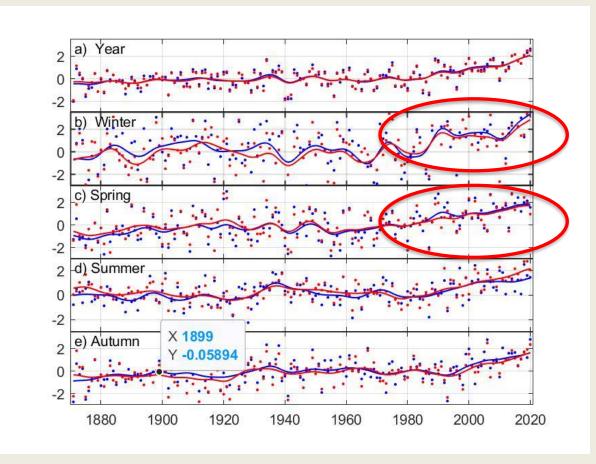
EN CLIME

Climate Change in the Baltic Sea 2021 Fact Sheet

Table 1. Full list of EN CLIME parameters. The asterisk (*) indicates those parameters that include information on extreme events.

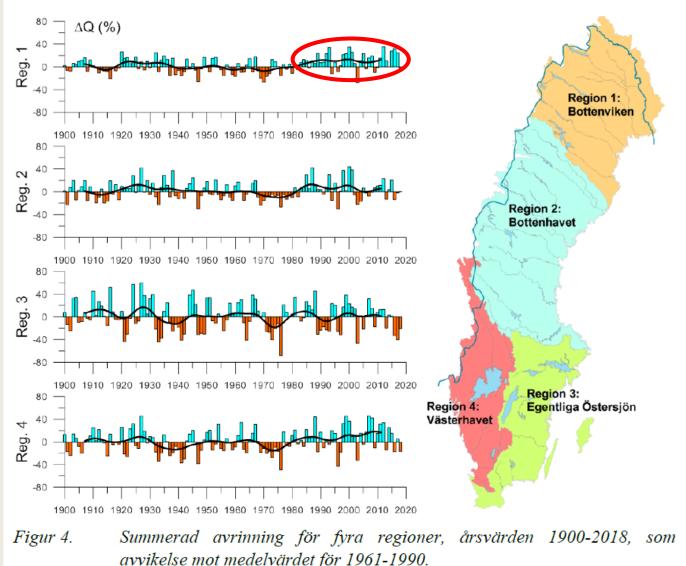
Direct parameters	Categorization
Air temperature*	Energy cycle
Water temperature*	Energy cycle
Large scale atmospheric circulation	Energy cycle
Sea ice*	Energy cycle
Solar radiation	Energy cycle
Salinity and saltwater inflows*	Water cycle
Stratification and ocean circulation	Water cycle
Precipitation*	Water cycle
River run-off*	Water cycle
Carbonate chemistry	Carbon and nutrient cycles
Riverine nutrient loads and atmospheric deposition	Carbon and nutrient cycles
Sea level*	Sea level and wind
Wind*	Sea level and wind
Waves*	Sea level and wind
Sediment transportation*	Sea level and wind

Secondary parameters	Categorization
Oxygen	Carbon and nutrient cycles
Microbial community and processes	Biota and ecosystems
Benthic habitats	Biota and ecosystems
Coastal and migratory fish	Biota and ecosystems
Pelagic and demersal fish	Biota and ecosystems
Waterbirds	Biota and ecosystems
Marine mammals	Biota and ecosystems
Non-indigenous species	Biota and ecosystems
Marine protected areas (MPA's)	Biota and ecosystems
Ecosystem function	Biota and ecosystems
Nutrient concentrations and eutrophication	Biota and ecosystems
Coastal protection	Human activities
Offshore wind farms	Human activities
Shipping	Human activities
Tourism	Human activities
Fisheries	Human activities
Aquaculture	Human activities
Blue carbon storage capacity	Services
Marine and coastal ecosystem services	Services



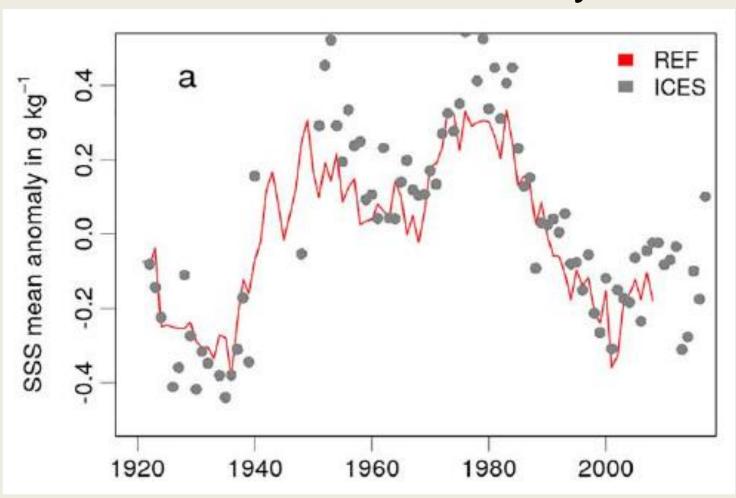
Present climate change

Air temperature over land


Larger than the global average, slightly larger than estimated earlier

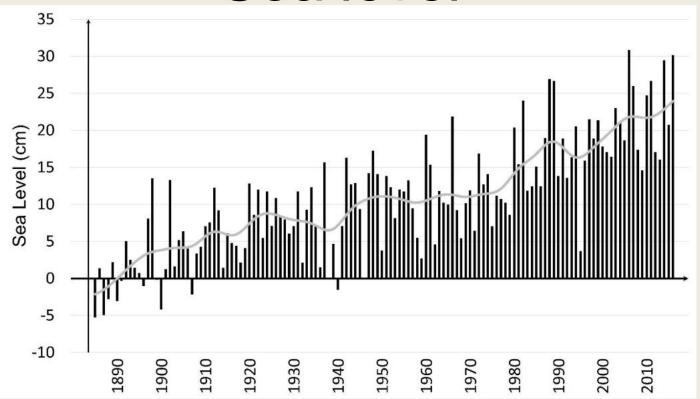
(Source: Anna Rutgersson, Uppsala University)

Blue, red: Baltic Sea basin region north and south, respectively, of 60°N.


avvikelse mot medelvärdet för 1961-1990.

(Source: Lindström, 2019)

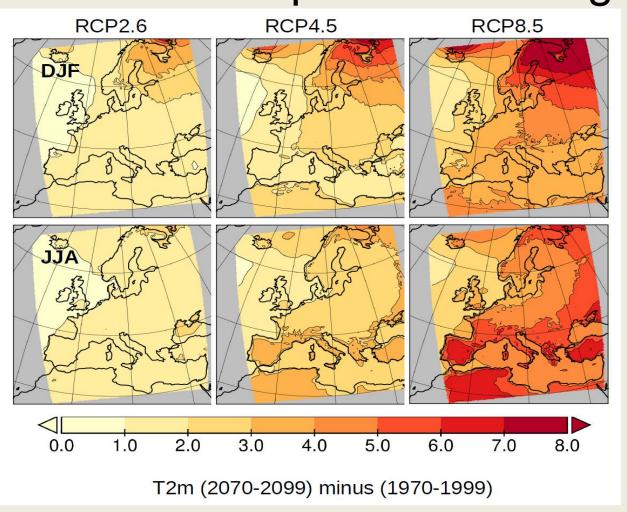
Sea surface salinity



(Source: Madline Kniebusch et al., 2019)

Sea level

Annual mean sea level changes in centimeters for 14 Swedish mareographs since 1886. The data are corrected for land uplift. The grey line shows a smoothed curve. (Source: Swedish Meteorological and Hydrological Institute)

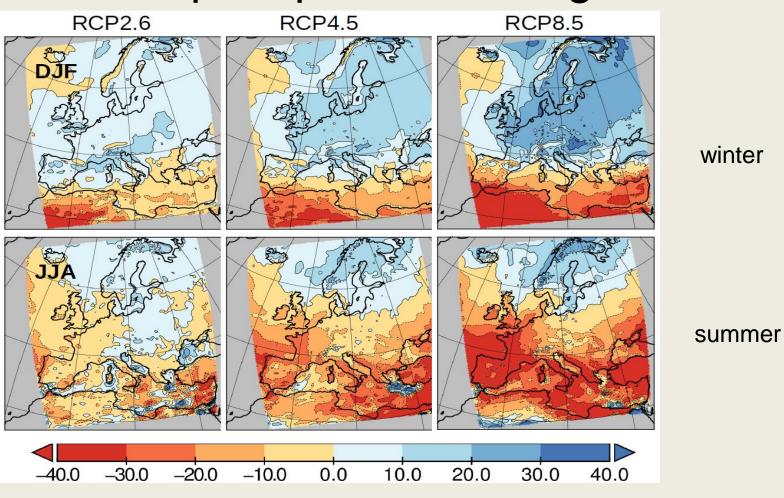


Future climate change

Future air temperature change

winter

summer


1.5 (RCP2.6) and 4.3°C (RCP8.5)

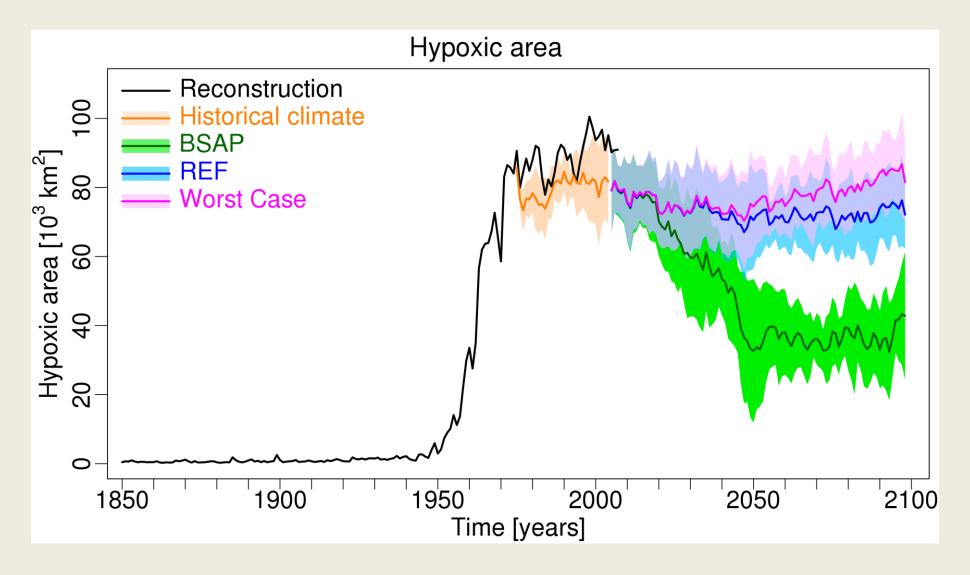
(Source: Gröger et al., 2021)

Future precipitation change

(Source: Gröger et al., 2021)

Table 1. Full list of EN CLIME parameters. The asterisk (*) indicates those parameters that include information on extreme events.

Direct parameters	Categorization
Air temperature*	Energy cycle
Water temperature*	Energy cycle
Large scale atmospheric circulation	Energy cycle
Sea ice*	Energy cycle
Solar radiation	Energy cycle
Salinity and saltwater inflows*	Water cycle
Stratification and ocean circulation	Water cycle
Precipitation*	Water cycle
River run-off*	Water cycle
Carbonate chemistry	Carbon and nutrient cycles
Riverine nutrient loads and atmospheric deposition	Carbon and nutrient cycles
Sea level*	Sea level and wind
Wind*	Sea level and wind
Waves*	Sea level and wind
Sediment transportation*	Sea level and wind



Secondary parameters	Categorization
Oxygen	Carbon and nutrient cycles
Microbial community and processes	Biota and ecosystems
Benthic habitats	Biota and ecosystems
Coastal and migratory fish	Biota and ecosystems
Pelagic and demersal fish	Biota and ecosystems
Waterbirds	Biota and ecosystems
Marine mammals	Biota and ecosystems
Non-indigenous species	Biota and ecosystems
Marine protected areas (MPA's)	Biota and ecosystems
Ecosystem function	Biota and ecosystems
Nutrient concentrations and eutrophication	Biota and ecosystems
Coastal protection	Human activities
Offshore wind farms	Human activities
Shipping	Human activities
Tourism	Human activities
Fisheries	Human activities
Aquaculture	Human activities
Blue carbon storage capacity	Services
Marine and coastal ecosystem services	Services

(Source: modified after Meier et al., 2019)

4. Gulf of Riga

 Baltic Proper (Northern Baltic Proper, Western Gotland Basin, Eastern Gotland Basin, Bornholm basin and Gdansk Basin)
 Entrance area (Kattegat, Great Belt, the Sound, Kiel Bay, Bay of Mecklenburg and Arkona

Climate future of the Baltic Sea

Projections under the RCP4.5 climate scenario

The impact map depicts projected regional changes for some of the most relevant parameters in a particular subbasin of the Baltic Sea under the RCP4.5 scenario. While there is also important information on the other parameters, there was a need to reduce the total 34 parameters to the presented parameters to make the map more legible. The presented parameters have 1) direct societal relevance/experience and/or relevance for other parameters, 2) medium to high confidence of the changes relative to the noise and model/expert judgement uncertainty under the RCP4.5 scenario, and 3) a hotspot sub-region in the Baltic with medium to high confidence of patterns of the regional changes.

Air temperature is projected to rise, most pronounced in the northern Baltic Sea region during winter. Sea surface temperature would rise and sea ice thickness **Gulf of Finland** and the length of the ice season would Sea surface temperature would rise decrease. Winter precipitation including and sea ice cover, ice thickness and the high-intensity extremes would increase. length of the ice season would decrease, Increased freshwater discharge would affecting ringed seal breeding and probbring more dissolved organic carbon to 1 ably causing a decline of the populations the sea, affecting benthic habitats by in the eastern Gulf of Finland, Likewise decreasing pelagic primary production breeding and wintering areas of migraand phytoplankton sedimentation. Land tory water birds would be affected. Wave is rising faster than the projected sea heights would increase and the potential level and the mean sea level would sink for shipping would increase if the ice relative to land. Bothnian Sea cover is reduced, but shipping intensity Sea surface temperature would rise is more dependent on market developeverywhere in the Baltic and in all ment than climate change. In the eastern seasons. Most pronounced would be Gulf of Finland, mean sea level would summer warming in the Bothnian Bay rise relative to the land, and higher storm and Bothnian Sea. Winter precipitation surges would occur. including high-intensity extremes would increase. Increased freshwater discharge would bring more dissolved organic car-(2) bon to the sea, affecting benthic habitats by decreasing pelagic primary production and phytoplankton sedimentation. In the Bothnian Sea, Gulf of Finland and Gulf of Riga, the decline in sea ice cover would be largest. Waves would be higher **Baltic Proper** and shipping might increase if the ice Sea surface temperature would rise. If cover is reduced. Food accessibility for BSAP measures on nutrient loads were to migratory water birds would improve be implemented, phosphorus concentracausing a northward shift of breeding tions and algal blooms would decrease and oxygen conditions of the deep water and wintering areas towards ice free coastal areas. In the Archipelago Sea, would improve. Without load reductions, ringed seal populations might decrease. only minor changes in nutrient concentrations are expected. The combined effects of warming and planned nutrient reductions will eventually lead to less carbon reaching the seafloor, reducing benthic animal biomass. In shallow archipelago waters, the fates of benthic animal and plant populations depend on local variations in biogeochemistry and primary productivity. In the southern Baltic, mean sea level would rise relative to the land, **Gulf of Riga** and higher storm surges would occur. Sea surface temperature would rise and Sediment transports would change. sea ice cover would decline, affecting ringed seal populations in the northern Baltic Sea entrance area Gulf of Riga. Likewise, breeding and Sea surface temperature would rise. Mean wintering areas of migratory water birds would be affected. In the southern Gulf sea level is projected to rise relative to the land, and higher storm surges would of Riga, mean sea level would rise relaoccur. Higher atmospheric pCO2 would tive to the land, and higher storm surges cause increased acidification. would occur. Assessment sub-basins 1. Bothnian Bay (Bothnian Bay and the Quark) 2. Bothnian Sea (Bothnian Sea and Åland Sea) 3. Gulf of Finland

Bothnian Bay

Selected results

5 May 2022

(1) Scenarios for the Baltic Sea project a **sea surface temperature** increase of 1.1°C (RCP2.6) to 3.2°C (RCP8.5) by the end of this century, compared to 1976-2005.

- (2) In the future, it is very likely that the **maximum sea ice extent** will further decrease.
- (3) Due to the large uncertainty in projected freshwater supply from the catchment area, wind and global sea level rise, **salinity** projections show a widespread trend, and no robust changes were identified.
- (4) Global **sea level** will rise and consequently the Baltic sea level as well, counteracted by land uplift in the northern areas.
- (5) Implementation of the BSAP will lead to significantly improved deep water **oxygen** conditions, irrespective of the climate projection.

Thank you very much for your attention!

