

Co-intanced by the European Negional Development runc

Inspire Policy Making with Territorial Evidence

ESPON IRIE

Interregional Relations in Europe

Project Brief

Co-financed by the European Regional Development Fund

Inspire Policy Making with Territorial Evidence

// This document presents a brief description of the key points of the project ESPON IRIE

Institute of Geography and Spatial Organization Polish Academy of Sciences

ESPON IRIE

Which are the research needs? Context & Project Objectives

How do we address the research needs?

Conceptual Framework - Tasks

3

2

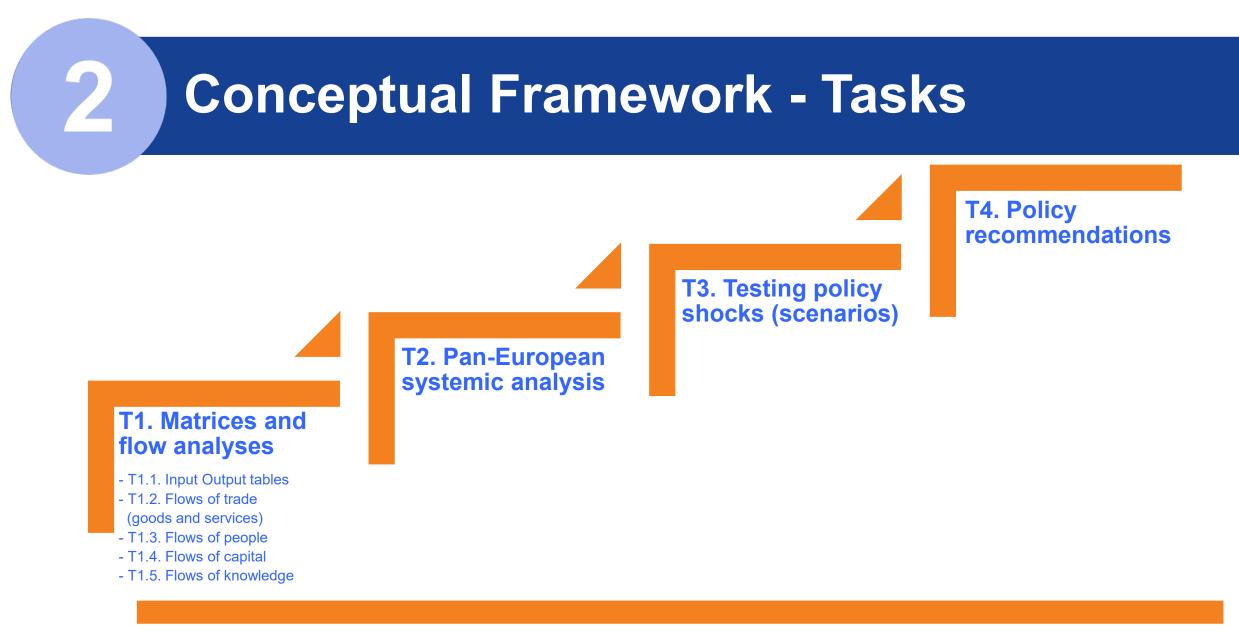
How do we assure high quality of the results and boost visibility of the project? **Project Management & Outreach**

Which are the main outcomes? Results

Context Project & Objectives

- The EU is gradually moving from a 'Place of states' to a 'State of places'.
- The abolition of economic barriers, and the consequent shrinkage of physical distance, has generated new spatial dynamics that influence the allocation of physical and human capital.
- National specificities and the level of engagement with the EU project have clear implications for interregional flows of people, goods, services and capital.
- As the 'Space of flows' (integration) affects the 'Space of places' (development), the mix of opportunities and threats to EU territories continues to change.
- Regional development strategies suffer from a crucial knowledge gap: the lack of data on interregional relations, key pieces on the Cohesion Policy agenda.
- It is in this context that the <u>'Interregional Relations in Europe' ESPON IRIE project</u> emerges.

General Objective


Inspire Policy Making with Territorial Evidence

ESPON IRIE aims to understand the interregional flows (between regions in ESPON's space) of CAPI A SERVICES and KNOWL and identify what benefits or harms them.

Specific Objectives

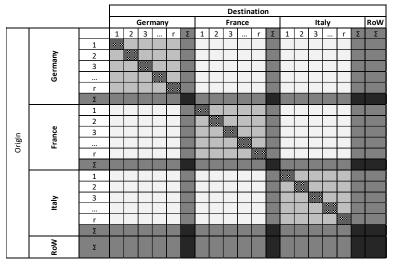
- To characterise interregional flows of trade (regional OD matrix)
- 2. To analyse other specific flows and interactions between regions
- **3**. To provide a systemic overview of the relatedness/ interdependencies between European regions.
- 4. To test the impacts of potential policy shocks as well as the level of exposure of regions.
- 5. To feed the discussions on future territorial and sectoral policies at EU, national and regional levels.

T5. Project management and outreach

Conceptual Framework - Tasks

Five type of flows:

Country-to-Country bilateral flows (C2C)


ESPON space: EU27, UK, Norway, Liechtenstein, Switzerland and Iceland

Region-to-Region bilateral flows (R2R)

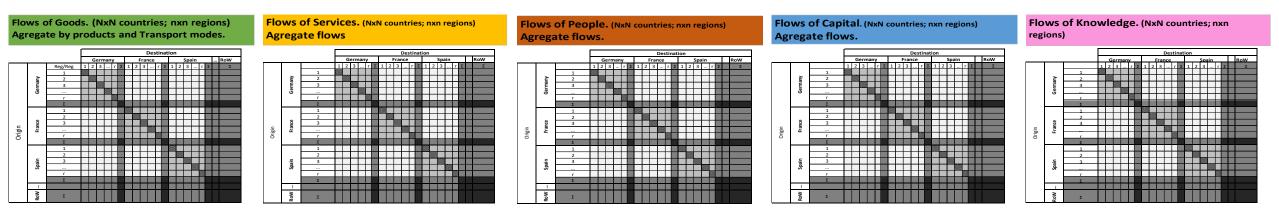
Information at this level of disaggregation only for the intra-ESPON space

- Intra-national flows
 - Intra-regional flows (NUTS2): origin and destination are the same
 - Inter-regional flows: origin and destination are different but lie the same country
- Inter-national flows within the ESPON space (R2R)
 - Inter-regional flows: the regions of origin and destination belong to separate countries in the ESPON space

Scheme of Origin-Destination flows (NxN countries; nxn regions)

Conceptual Framework - Tasks

 The tasks proposed will result in NEW DATA and EVIDENCE, while ensuring complementarity with other initiatives developed by the European Commission and national authorities in the field of interregional relations such as RHOMOLO, ESPON, OECD, or World Bank.

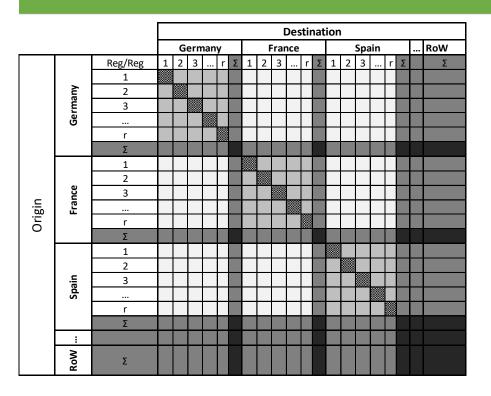

Data Extended and Improved	New Data	New Evidence
EU Interregional Input-Output Tables (available data: 2000 – 2010 and 2013; spatial extension of EURO-IRIO 2013 /	- Flows of goods by transport mode: road, air, maritime, railway - freight flows (2010 – 2018)	Extension of the EU-IRIO model (improvement on current knowledge of inter-sectoral linkages between regions; generation of quantitative
2014 – 2015 to the NUTS 2 regions of the ESPON countries)	 Flows of services by sector. Nation-to-nation database (2010 – 2018) 	scenarios; collaboration with JRC Seville)
Coordination with the JRC	- · · · · · · · · · · · · · · · · · · ·	Analyses with transport mode competition /
	 Flows of people by motive of displacement (commuting, tourism and migration) and tranport mode (basis for the estimation of flows of services, capital and knowledge) 	cooperation in Europe (freight and passengers). Essential to descarbonizing the transportation sector
	- Flows of capital and transfer: FDI, remittances and loans -	Baseline knowledge for interregional flows of people in the EU
	 Flows of knowledge: students (Erasmus); institutions (H2020 partnerships); innovation (patents) 	

Baseline: oficial data covered with a Pan-European perspective (Eurostat, EC, WB, OECD); national and regional sources; pre-existing datasets from other institutions and previous ESPON and other European projects (e.g. FIGARO project, ESPON DEMIFER project, etc).

Specific and innovative data will be used in Exploratory Analyses and Case Studies (complement to the structural statistics)

Task 1. Building Matrices and Analysing Different Kind of Flows

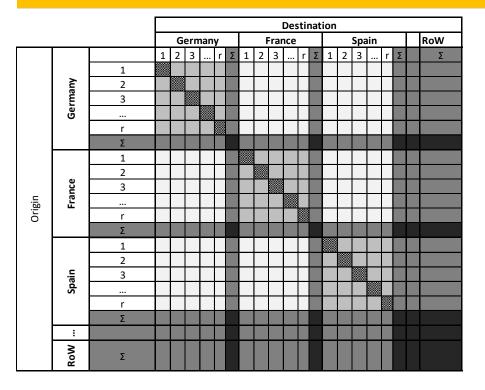
- Set of matrixes of interregional flows of goods, services, people, capital and knowledge.
- For each set of data / type of interaction ESPON IRiE will produce:
 - An overview of characteristics, intensity, and structure of related flows over time
 - A typology of regions by intensity and geographical structure of the flows affecting them \rightarrow Impact Assessment
 - Traditional and newly developed flow maps and innovative graphs for proper visualization of past and current situations


Task 1.1 Input – Output Tables

- Close collaboration with the JRC Seville Rhomolo team
- EURO-IRIO model: JRC and PBL, new tables for 2017, harmonized with the C2C FIGARO new tables (provided in May 2021)
- <u>Our contribution</u>: to develop and use an extended EURO-IRIO dataset for 2017, and to harmonize it with FIGARO national totals.
 - Spatial extension of EURO-IO 2013 to the NUTS2 regions of the ESPON countries: Iceland, Switzerland, Lichtenstein and Norway
 - 63 sectors disaggregation datasets based on FIGARO.
 - **Development of scenarios** (Task 3) using the extended datasets

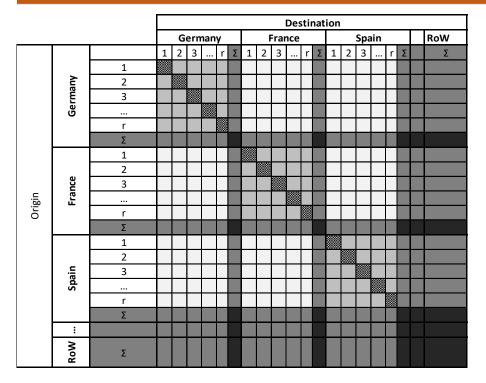
Task 1.2a Interregional flows of goods

- <u>Aim</u>: to produce region-to-region trade flows of goods (in €) and transport flows (in tons) within and between the regions (NUTS2) in the ESPON space:
- Trade flows of goods by mode and sectors: in € and tons
 - Compatible with C2C trade totals (BACI; COMEXT and FIGARO)
 - R2R structures based on transport flows by Road (by 14 products NST), Air, Maritime and Railway freight flows
- Transport flows by mode:
 - Transport statistics on intra-national and international freight flows: Eurostat.


Flows of Goods. (NxN countries; nxn regions) Agregate by products and Transport modes.

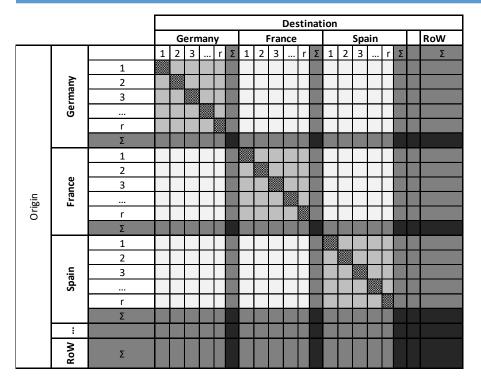
Task 1.2b Interregional flows of services

- Aim: to produce region-to-region matrixes of different service sectors (EBOPS-2010) within and between the ESPON countries. Such estimates are complementary to the ones in the EURO-IO tables, since cover 2010-2018.
- Modes of service delivery:
 - Mode 1: Cross-Border Provision
 - Mode 2: Consumption Abroad
 - Mode 4: Producer Presence
- Sources: inter-national (C2C) flows for different service sectors reported by WTO-UNCTAD and OECD (BATIS), compatible with the FIGARO national-sectoral totals.
- R2R indicators for the regionalization will be mainly based on inputs from Task 1.3, Task 1.4 and Task 1.5, plus other innovative data (Facebook SCI).


Flows of Services. (NxN countries; nxn regions) Agregate flows

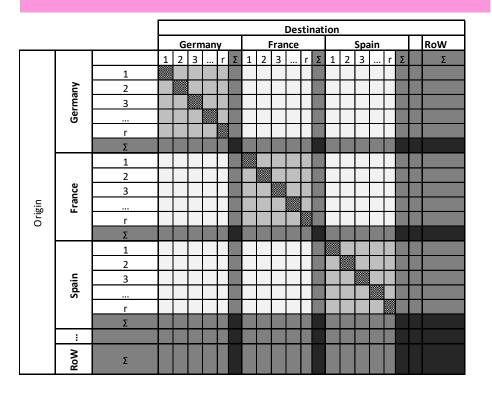
Task 1.3 Interregional flows of people

- <u>Aim</u>: to produce region-to-region flows of people in and between ESPON countries
- Types of spatial mobility:
 - Short-term: commuting, tourism
 - Long-term: migration (built on findings of ESPON DEMIFER)
- Transport mode:
 - Road, Air, Maritime and Railway
- Sources:
 - Eurostat (e.g. national censuses and tourism data)
 - EU's labour statistics


Flows of People. (NxN countries; nxn regions) Agregate flows.

Task 1.4 Interregional flows of capital

- <u>Aim</u>: to produce region-to-region origindestination matrixes for capital flows in and between ESPON countries
- Types of capital flows:
 - Short-term: remittances, loans
 - Long-term: Direct Investment
- Sources:
 - DI: Amadeus database
 - Remittances: UNCTAD, OECD, World Bank, International Monetary Fund, Eurostat
 - Loans: BIS Locational banking statistics (LBS) and EDW database


Flows of Capital. (NxN countries; nxn regions) Agregate flows.

Task 1.5 Interregional flows of knowledege

- <u>Aim</u>: to produce region-to-region knowledge flows in and between ESPON countries (nature and intensity of flows)
- Types of knowledge flows:
 - **Erasmus** student exchange flows
 - European research networks: H2020 partnership
 - Innovation diffusion: Patent citations
- Sources:
 - EU Open Data Portal: Erasmus programme mobility dataset and CORDIS database
 - Patents: OECD datasets: PATSTAT, REGPAT

Flows of Knowledge. (NxN countries; nxn regions)

Task 1.6 Exploratory Analyses and Case Studies

- Innovative analyses designed to reinforce the structural data to deliver
- The outputs of the exploratory analyses will fit into Case Studies

Case studies

Detail flows by road of goods between Spain and the EU with focus in the Spanish-French border/ Spanish-Portugal border

Cross-border migrations across the outer boundary of the EU (1994-2020). The example of Polish-Ukrainian and Polish-Belarusian borders (including the effects of COVID19 in migration flows)

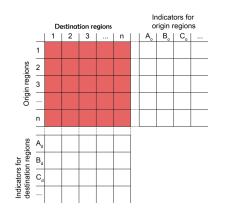
The interregional flows of students in the EU: attractors and barriers

New interregional info sheet for regional development strategies, the case of Navarre (Spain)

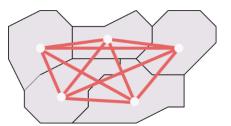
Firm Relocation from Greece to Bulgaria in times of economic crisis: Spatial and sectoral analysis

COVID-19 impacts on air transport flows between European regions

Policy Briefs

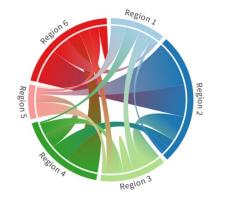

Interregional statistics in the EU: the state of the art

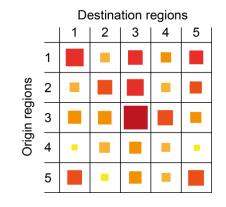
COVID-19 and Brexit impacts on the interregional flows of students in the EU


Systemic analysis, scenarios and policy

- ESPON IRIE focuses on the analysis of the spatial interaction between regions. Thus, a substantial part of the analysis does not deal with data and indicators describing certain aspects of a region, but with flows between all regions.
- As the project presents interregional flows as spatially conceptualised phenomena, cartographic methods of presentation play a particularly important role in graphic presentation of the data → Mapping and Visualisation Challenge
- Visualization options:
 - To display the full matrix in a figure
 - To show only the flow of one particular region as origin or destination
 - To establish aggregate flow indicators by region and of regional flow typologies (expression of analytical aspects)

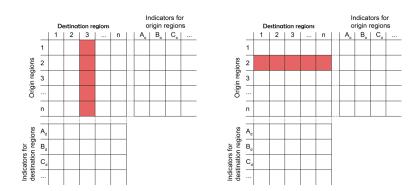
- Visualization options
- Regional flow matrix visualisation
 - Full matrix flow maps; Sankey diagrams; Chord diagrams; Heatmaps


Regional flow matrix visualisation.



Schematic full matrix flow map

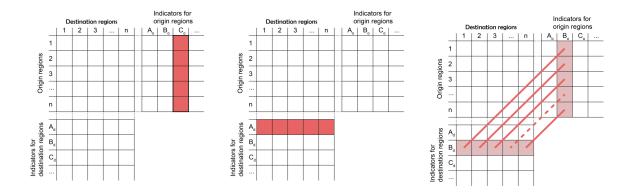
Schematic Sankey diagram



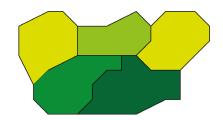
Schematic Chord diagram

Schematic matrix heatmap

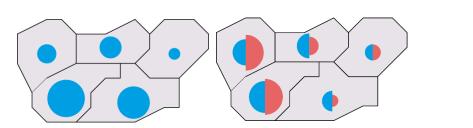
- Visualization options
- Individual region's flow visualisation
 - Spider maps; Choropleth maps; Diagram maps; Symbol diagrams; Treemaps

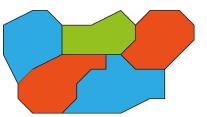


Individual region's flow visualisation (left for sample destination region, right for sample origin region)



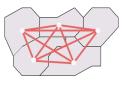
Schematic diagram map (single value; inflow and outflow separately)


- Visualization options
- Regional flow indicator visualisation
 - Choropleth maps; Symbol maps; Chorochromatic maps


Regional flow indicator visualisation (left: sample indicator for origin regions; middle: sample indicator for destination regions; Right: intraregional relation between outflow and inflow)

Schematic choropleth map

Schematic symbol maps (single value, left; inflow and outflow values, right)


Schematic chorochromatic map

Task 2. Pan-European Systemic Analysis

- <u>Aim</u>: to provide a systemic overview of the relatedness / interdependencies between European regions combining →
 - Intensity of flows
 - Explanatory factors
 - Territorial characteristics
- Overall ambition: to provide a new frame of reference to support regional development policies and inform regional convergence
- Final goal: to define typologies for regions using OD matrixes in coordination with the typologies per flow developed in Tasks 1.2 1.5

Task 2. Pan-European Systemic Analysis

- Context: it is possible to look at the territorial structure of Europe from two sets of data
 - A set of regions characterised by their network of external relations
 - A complete set of matrix relations

Methodology:

- 1. **Multiflow typology:** gravity equation, spatial econometrics and statistics, GIS analysis, network analysis. Multivariate analysis such as principal component analysis to build a comparison of flows in four dimensions: symetry, distribution, impedance, dynamics
- 2. Cross-referencing: correlation relationships. E.g. 'Brain drain' will be analysed by crossing flows of people with flows of knowledge
- **3. Regional typology:** based on outputs from the previous stages (multilvariate analyisis and correlations)
- 4. Combined analysis to assess competitiveness and cohesion in European regions through an analysis of flows
- **5. Comparison** with other regional typologies

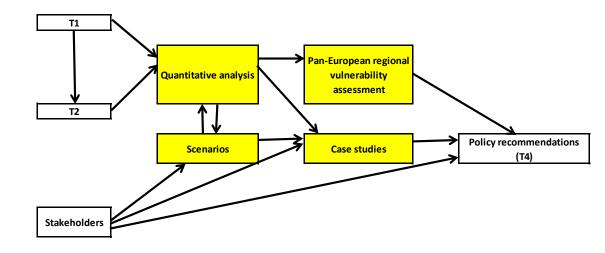
Task 2. Pan-European Systemic Analysis

Expected outcomes:

- Typologies of regions according to the different kinds of interactions, combining identified drivers and causes in relation to regional development. This typologies will distinguis the situation for specific territories: islands, outermost, montainous, coastal, regions in industrial transition, etc.
- Series of maps and visual materials to capture the main patterns and relatedness between regions and their evolution.
- Identification of major driving forces for the cohesion, competitiveness, quality of life, and well-being
 of regions and for the convergence of regional economies
- Pan-European analysis at the level of interregional relations, at the level of region country relations and analysis for regions (NUTS2).

Task 3. Testing Policy Shocks Scenario Analysis

• Aim: to test the impacts of potential policy shocks on interregional relations as well as the level of exposure and resilience of regions according to the intensity of these linkages and their territorial characteristics; to determine the extent to which the previously identified settings of the interregional flows in Europe (T1 and 2) may change in response to policies and external shocks


Scenario building:

- is not equivalent to forecasting, but is an exploration of possible events / actions based on current social, economic, and environmental drivers
- is less about predicting the future than about **perceiving long-term futures from the present**
- will rely on foreseen external causes, such as COVID and Brexit, and realistic expected political decisions, like the Green Deal, rather than theoretical hypothesis

Task 3. Testing Policy Shocks. Scenario Analysis

Methodology:

- Quantitave and qualitative methods
- Inputs: Matrices and conclusions (Task 1); Typologies of regions and flows (Task 2); Stakeholder engagement
- Steps in scenario building:
 - To describe and recognise policy design (i.e. cohesion policy, S3, policy on trade, causes of Brexit, etc)
 - To identify different mechanisms that add an emphasis on external validity, or the transferability of interventions between different contexts. E.g. The Pan-European systemic analysis
 - To formulate scenarios based on case studies that engage with stakeholders. They will serve to gain more in-depth understanding on drivers and limits of interregional flows, to help interpreting scenarios, and to identify relevant policy recommendations in specific territorial contexts

Task 3. Testing Policy Shocks. Scenario Analysis

Expected outcomes:

- Assessment of the impact of specific policy shocks on all regions of the EU (quantitative analysis)
- Assessment of the impact on flow intensity on regional situations
- Assessment of the vulnerability of selected regions of external factors (qualitative analysis)
- Recommendations for different types of regions, to reduce risks arising from external factors

Title	Scenario Description and Assumptions	
Green Deal	Changes in the structure of the European economy (especially in the energy sector); Changes in the modal structure of transport (reducing air and road transport, supporting rail, tram, bikes, and other forms of public transport); Circular economy , which means shortening the distance of transport of certain types of goods and promoting prosumers (consumers who also produce the product); Consideration of consequences for certain sectors , including agriculture.	
New Globalization	Customs duties (e.g. 25% for automotive products from Europe and Japan in the United States). Assessment of interregional impact of some of the main protectionism measures adopted/announced by the US against the EU. Selected industries (e.g. automotive, aircraft).	
COVID-19 long-term effect	Formation of a post-COVID economy; Development of teleworking and e-services and reduction of commuting (including trans-border commuting); Changes in the pattern of international mobility of the population within ESPON space; Changes in the dynamics of development of particular branches of the economy , reduction of external flows (e.g. EU-China), change of some trends observed in recent decades (development of air transport, globalisation of production chains, reduction of individual transport, etc.); Consequences of anti-COVID programmes to mitigate the effects of the crisis at the European and Member State level	
Brexit	Assumptions to be adopted after the possible conclusion of EU-UK negotiations in 2021. These will include, first of all: trade restrictions, migration restrictions, reduced student flows . These factors will only concern the relationship between the regions in the UK and other regions in ESPON space.	

Task 4. Policy Recommendations

- Aim: to feed the discussions on future territorial (New Territorial Agenda) and sectoral policies and interventions at the EU, national and regional levels (e.g. on migration, employment, climate change, mobility, economic development), in order to produce policy recommendations to increase regional competitiveness and cohesion.
- Input: This task will build upon the results obtained in Tasks 1 3, and will turn the empirical findings into policy recommendations in line with the abovementioned aim. To that end, we will consider how to improve and balance the flows of capital, labour, goods and services to achieve optimal gains for different types of regions in the EU.
- Output: Task 4 Will produce knowledge for policy formulation (by sector and geographic coverage) at the regional, national and EU level, with respect to territorial cohesion, smart specialization instruments and certain sectoral needs.

Task 4. Policy Recommendations

Methodology:

- 1. **Define the problem:** to identify the assumptions made about the problem, get metrics, check causal assumptions are correct, explore social and political context
- 2. Construct alternative solutions: a) collecting and inventing possible solutions; b) reducing and simplifying the list of solutions
- **3.** Select criteria for judging success: a) generation of a list of applicable criteria; b) rank the criteria (decision matrix)
- 4. Project outcomes from alternative solutions: we look for impartiality applying models and creating scenarios
- 5. Analyse trade-offs between outcomes and estimate what impact they may have
- 6. Choose the best solution
- 7. Explain our recommendations and how we arrived at them

Task 4. Policy Recommendations

ESPON IRIE will:

- Report EU, national or regional policies and interventions that have already demonstrated efficiency in addressing interregional flows
- Develop a framework of interventions that could reduce: a) the barriers in interregional flows, b) regional asymmetries in the inflows, and c) the potential risk of specific political decisions
- Propose a territorial and cohesion policy for the EU based on place-based regional development strategies and investment policies
- Make policy recommendations for the New Territorial Agenda and for regional development needs
- Focus on different cases, where different kinds of flows are relevant, and allow for a differentiated approach to regions, since there is no "one-size-fits-all" set of recommendations, especially with respect to implementation
- Cluster flow typologies to allow more general recommendations on how to manage them for greater competitiveness and cohesion
- **Provide for open communication and transparency** in interactions between policy makers in different regions
- Tailor our policy recommendations to different types of policymakers, alongside different typologies of regions and typologies of flows

Project Management and Outreach

Strategic Advisory Board (SAG)

Consult service implementation and discuss concrete policy proposals

Evaluation of progress and quality and recommendations

Dissemination activities

Highest impact at the scientific and policy level of project results

ESPON website; ESPON IRiE web section; Regional Infosheets; ESPON events; Policy briefs; Press releases; Social media channels; Stakeholder meetings; Scientific papers

On-line tools

Flow data and interregional relations mapping and visualization

ESPON IRiE thematic web portal;

Infosheets for each of the NUTS2 regions (maps, charts, flows description, analyses, scenarios, policy recommendations);

Maps and charts in reports and web services

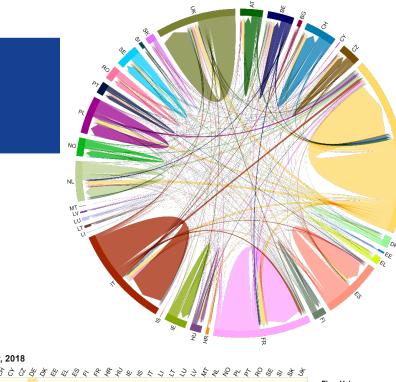
Proyect Management & Outreach

- NASUVINSA (Navarre, Spain) coordinates and leads the project team with the support of:
 - CEPREDE: this partner will lead the efforts of all partners in Task 1, and will coordinate efforts with leader of Task 2.
 - **UEF:** this partner will lead the efforts of all partners in Tasks 3 and 4.

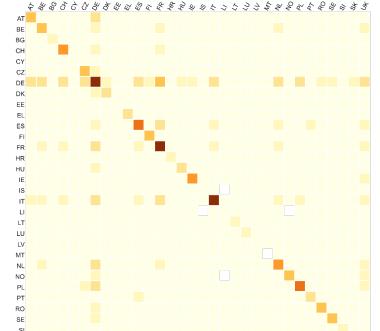
Management & Outreach documents

- Implementation plan. The system to implement the project includes:
 - A comprehensive plan for virtual monthly project team meetings; coordination meetings with ESPON and the Project Suppor Team (PST), every two months; project meetings between Nasuvinsa and ESPON, every two months; SAG meetings
 - A plan for **Finances and Deliveries**, with deadlines, progress update (Done, Delayed, In progress), and contingency plan
 - A detailed schedule for all the tasks and subtasks: deadlines, progress update (Done, Delayed, In progress), contingency plan
- Communication and Dissemination Strategy. This document gathers:
 - Evaluation (communication indicators, such as the expected number of media impacts) and Schedule, with delivery deadlines and milestones for every tool / product
 - A description of every **communication tools and products** (see dissemination activities chart)
- Quality Control Measures and Risk Management. This document presents the contingency plans to overcome potential risks

3

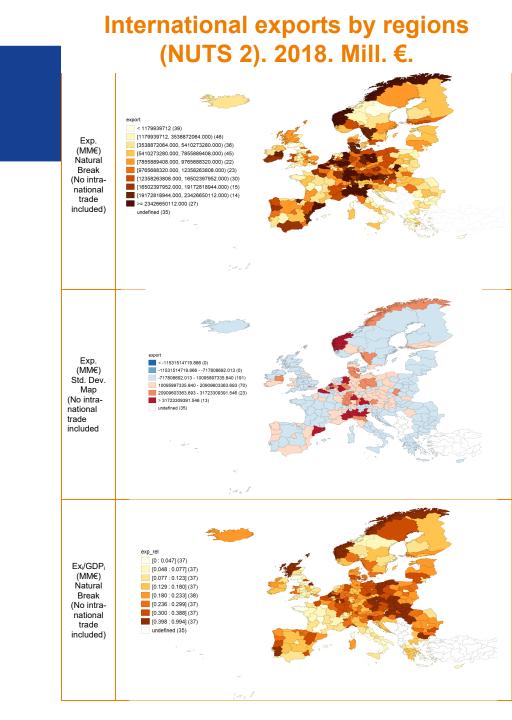

Results

1. Interregional trade flows of goods


- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)
- Typologies
- Analysis

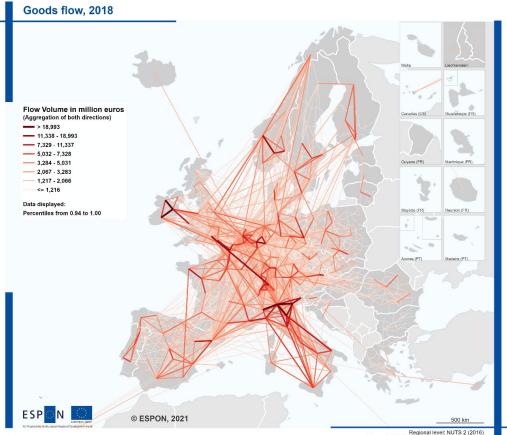
Results. Trade of Goods

- Results at country level (NUTS 0)
 - Trade flows of goods
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - Temporal scope: 2010 to 2018
 - Sectoral detail: Total + 14 sectors NST + 5 transport modes.
 - Source: Own elaboration based on WTO-UNCTAD/FIGARO.
 - Data features:
 - 32 X 32 OD matrixes for each year
 - Variable under consideration: trade flows (Mill.€)
 - Intra-national and inter-national flows included. Inter-national are harmonized to BACI (UN/CEPII) and COMEXT (Eurostat). Intra-national flows take FIGARO total output (country-sector-year) as reference.


Flow Volume

420,047 - 561,807 million euros 237,983 - 420,046 million euros 146,656 - 237,982 million euros 77,378 - 146,655 million euros 34,530 - 77,377 million euros 9,942 - 34,529 million euros

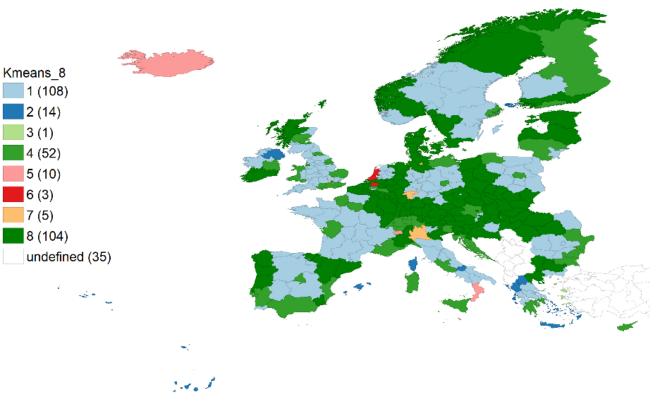
> 561.807 million euros


Results. Trade of Goods

- Results at regional level (NUTS 2)
 - Trade flows of goods
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - Temporal scope: 2010 to 2018
 - Sectoral detail: Total + 14 sectors NST + 5 transport modes.
 - Source: Own elaboration based on WTO-UNCTAD/FIGARO.
 - Data features:
 - 329 X 329 OD matrixes for each year
 - Variable under consideration: trade flows (Mill.€)
 - Intra-national and inter-national flows included. Inter-national are harmonized to BACI (UN/CEPII) and COMEXT (Eurostat). Intranational flows take FIGARO total output (country-sector-year) as reference.

Results. Trade of Goods

Map of the R2R flows (exp + imp). Goods. 2018. €.


Regional level: NUTS 2 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: CEPREDE, 2021 © EuroGeographics for the administrative boundaries Sankey diagram with the main bilateral-flows. R2R. ROW and Intraregional excluded. Average figures 2010-2018. % over Mill. €.

O_Eastern and Midland: 0.485	Southern: 0.357
O_Piemonte: 0.240	Northern and Western: 0.230
O Emilia-Romagna: 0.489	
O_Emilia-Romagna. 0.469	Lombardia: 1.103
O_Southern: 0.418	
O_Friuli-Venezia Giulia: 0.212	Eastern and Midland: 0.516
O_West Wales and The Valleys: 0.107	Veneto: 0.463
O_Northern and Western: 0.093	Friuli-Venezia Giulia: 0.102
O_Veneto: 0.559	
O Liguria: 0.190	Piemonte: 0.329
O_LIGUIA. 0.190	Emilia-Romagna: 0.468
O_Lombardia: 0.675	Kent: 0.128
O_Puglia: 0.100	Vestlandet: 0.128
O_Nord-Pas de Calais: 0.128	Oslo og Akershus: 0.110
O_Sør-Østlandet: 0.238	Zürich: 0.208
 O_Outer London — West and North West: 0.121 	Düsseldorf: 0.311
O_Arnsberg: 0.120	Espace Mittelland: 0.119
O_Köln: 0.093	Arnsberg: 0.273
O_Nordwestschweiz: 0.206	Köln: 0.108
O_Münster: 0.181	Münster: 0.081
O_Düsseldorf: 0.379	Sør-Østlandet: 0.217
O_Oslo og Akershus: 0.090	East Yorkshire and Northern Lincolnshire: 0.091
O_Vestlandet: 0.218	Ostschweiz: 0.115
O_Liechtenstein: 0.115	Braunschweig: 0.100 Berlin: 0.099
O_Hamburg: 0.100	Nord-Pas de Calais: 0.097
 O_Brandenburg: 0.099 0.14 - 0.002 	Prov. Antwerpen: 0.104
O_Kent: 0.097	Noord-Brabant: 0.084
O_Zuid-Holland: 0.188	Helsinki-Uusimaa: 0.093
O_Etelä-Suomi: 0.093 O_Niederösterreich: 0.092	Wien: 0.092
O_Espace Mittelland: 0.179	Nordwestschweiz: 0.097
O_Espace Milleliand. 0. 179 O_Karlsruhe: 0.087	Région lémanique: 0.082 - Stuttgart: 0.087 -
 O_Noord-Brabant: 0.086 	Zuid-Holland: 0.086
O_Pays de la Loire: 0.085	Bretagne: 0.085
 O_Östra Mellansverige: 0.082 	Stockholm: 0.082

Results. Trade of Goods

Cluster analysis: Regional Typologies

Indicator	Definition	Units
1.Connectivity	Number of destination regions	Nº regions
2. Intensity	Total international exports	Th. million euros
3. Weighted Intensity	Total international exports as share of total trade	%
4. Interregional balance	Ratio between the region international exports share and the country international exports share	%
5. Network Selectivity	Share of exports to the main destination region.	%
6. External Influence	Ration between the international exports and the imports from the main destination region.	%
7. Send-Receive Balance	Trade balance. Exports – Imports.	Th. million euros

	Dep. variable	Trade flow (log euros)	Trade flow (euros)	Tra	ade flow/(GDPi*GE	DPj)
		OLS	PPML	PPML	PPML	Р
		M1	M2	M3	M4	
Desults Trade of Coode						
A Results. Trade of Goods	Ln(GDPi)	0.970***	0.663***			
		-0.0201	-0.0533			
	Ln(GDPj)	0.890***	0.593***			
		-0.0187	-0.0271			
	Intra	2.905***	3.600***	2.951***	3.438***	3.4
		-0.255	-0.244	-0.457	-0.223	-0
T_{ijt}	LnDist	-0.850***	-0.102	-0.796***	-0.505***	-0.4
		-0.0551	-0.0836	-0.133	-0.0688	-0
$= \exp \left \beta_0 + \beta_1 GDP_{it} + \beta_2 GDP_{jt} + \beta_3 INTRA_{ij} + \beta_4 INTER_{ij} \right $	Contig	1.044***	0.961***	0.979***	1.365***	1.3
+ $\beta_5 CONTIG_{ii}$ + $\beta_6 DIST_{ii}$ + $\beta_6 X_{ii}$ + μ_{it} + μ_{it} + ϵ_{iit}	-	-0.137	-0.155	-0.297	-0.177	-0
$+ p_5 \text{CONTEG}_{ij} + p_6 \text{DIST}_{ij} + p_6 x_{ij} + \mu_{it} + \mu_{jt} + \varepsilon_{ijt}$	ComLang	-0.343*	-0.0121	0.0876	0.795***	8.0
		-0.195	-0.148	-0.511	-0.16	-0
8-	EU	0.518***	-0.0743	0.972**	0.182*	0
÷		-0.081	-0.151	-0.427	-0.105	-0
	EUM	-0.242***	-0.187	-0.247	0.688***	0.6
∞ –		-0.0607	-0.16	-0.3	-0.203	-C
	Island	-0.122*	-0.356*	-1.434*	0.817**	0.
		-0.0738	-0.214	-0.743	-0.326	-0
For a local trade	Nocoast	-0.375***	-0.0569	-0.419	-1.144***	-1.
		-0.0643	-0.116	-0.282	-0.188	-0
	Constant	-11.06***	-7.489***	5.187***	4.009***	3.8
46 - 46 - 46 - 46 - 46 - 46 - 46 - 46 -		-0.52	-1.006	-0.866	-0.425	-0
	exp(Intra)	18	37	19	31	
8 -	Observations	9,397	9,504	9,504	9,504	9
	R2 / Pseudo R2	0.867	0.954	0.822	0.935	0
	Year FE	NO	NO	NO	YES	Y
2010 2011 2012 2013 2014 2015 2016 2017 2018	Country FE	NO	NO	NO	YES	١
International Inter-regional Intra-regional	Country-Year FE	NO	NO	NO	NO	Ņ

PPML M5

3.444*** -0.222 -0.499***

-0.0678 1.352*** -0.177 0.854*** -0.172 0.412 -0.274 0.644*** -0.202 0.753** -0.331 -1.126***

-0.187 3.852*** -0.455 31 9,504 0.948 YES YES YES

	Dep. variable				Trade flow/(GDPi*GDPj)			
		Sh	ip	Tra	ain	Ro	ad	А	ir
		M1	M2	M3	M4	M5	M6	M7	M8
Results. Trade of Goods	Intra	2.730***	-0.727	5.422***	2.536***	3.189***	1.645***	-0.524	-4.352***
		-0.56	-0.607	-0.632	-0.347	-0.262	-0.132	-0.852	-0.965
	inter	2.192***	0.713***	4.628***	3.571***	1.689***	1.112***	-3.160***	-2.463***
		-0.28	-0.271	-0.303	-0.212	-0.181	-0.0848	-0.354	-0.394
	LnDist	0.0812	-0.297***	-0.135	-0.906***	-0.539***	-0.936***	-0.537***	-0.906***
Top-50 inter-regional flows by transport mode. ROW and		-0.119	-0.094	-0.151	-0.086	-0.073	-0.036	-0.15	-0.121
Intra-regional excluded. Average 2010-2018. % over €.	Contig	0.720**	-0.425**	1.027***	-0.057	1.576***	0.839***	-1.598***	-1.882***
 O_Hamburg 		-0.334	-0.174	-0.163	-0.118	-0.101	-0.052	-0.388	-0.536
O_Puglia O Friuli-Venezia Giulia O Friuli-Venezia Giulia	Contig_C	-0.172	0.091	1.442***	1.059***	0.698***	0.436***	-0.332	-0.345
Braunschweig –		-0.153	-0.127	-0.157	-0.135	-0.0789	-0.04	-0.286	-0.219
O_Emilia-Romagna Lombardia	ComLang	0.074	1.596***	-0.077	0.216	0.198	0.467***	0.177	-0.414
O_Düsseldorf		-0.23	-0.223	-0.239	-0.133	-0.133	-0.062	-0.301	-0.284
O_Veneto Arnsberg	EU	-1.379***	-0.069	2.022***	2.169***	1.322***	1.904***	-1.202***	-0.391
Emilia-Romagna		-0.153	-0.254	-0.339	-0.523	-0.224	-0.239	-0.201	-0.371
O_Eastern and Midland Southern	EUM	0.364***	0.031	-1.957***	0.266	-0.965***	-0.180***	0.725***	0.082
O_Southern		-0.114	-0.154	-0.202	-0.198	-0.131	-0.046	-0.207	-0.264
O_Piemonte Veneto	Island	0.906***	0.045	-1.567***	1.632**	0.086	-2.170***	0.411**	-0.108
Piemonte		-0.101	-0.18	-0.167	-0.722	-0.25	-0.122	-0.171	-0.559
O_Lombardia Road Northern and Western	Coast			0.047	1.132***	0.083	-0.179**	-0.690***	-0.461**
O_Liechtenstein Ostschweiz				-0.253	-0.211	-0.135	-0.082	-0.257	-0.193
O_Nordwestschweiz Espace Mittelland	Inst	-0.564***	-0.518***	-0.045	0.128*	-0.101***	0.040**	-0.807***	-0.460***
O_Arnsberg Düsseldorf O_Liguria Oslo og Akershus		-0.062	-0.05	-0.083	-0.069	-0.031	-0.019	-0.139	-0.12
O_Northern and Western Köln	Outermost	0.193**	1.775***	-3.009***	0.424**	-1.580***	-0.082	1.386***	0.630**
= O_Kõin Friuli-Venezia Giulia =		-0.098	-0.229	-0.125	-0.17	-0.144	-0.065	-0.197	-0.29
O_Espace Mittelland Nordwestschweiz O Oslo og Akershus Zuid-Holland	lsland_c			0.557*	0.237	0.258**	0.0552	0.0729	1.383***
= 0_Noord-Brabant Stuttgart =				-0.295	-0.196	-0.131	-0.0571	-0.215	-0.321
O_Karlsruhe Berlin — Noord-Brabant	Nocoast_c	0.213	-1.349***			-2.550***	-5.574***	-0.109	-5.839***
O_Brandenburg O Zuid-Holland		-0.432	-0.484			-0.95	-0.602	-0.494	-1.09
O_Castilla-La Mancha Bretagne	Constant	-1.472*	2.852***	-3.630***	1.913**	2.638***	5.393***	0.797	6.488***
O_Pays de la Loire Wien O Niederösterreich Rheinhessen-Pfalz		-0.822	-0.673	-0.97	-0.758	-0.598	-0.349	-1.006	-0.871
O_Nüederösterreich O_Münster Eastern and Midland	Observations	796,554	162,947	754,290	631,760	796,554	743,904	796,554	259,833
O_Sør-Østlandet Liguria	R2 / Pseudo R2	0.196	0.582	0.601	0.815	0.8	0.906	0.092	0.598
O_Vestlandet	Year FE	NO	YES	NO	YES	NO	YES	NO	YES
O_West Wales and The Valleys Ship O, Nord-Pas de Calais Zürich	Region FE	NO	YES	NO	YES	NO	YES	NO	YES
O_Sicilia Aircraft Vestlandet	Region-Year FE	NO	YES	NO	YES	NO	YES	NO	YES
O_Outer London — West and North West	Region-real r C				120		120		120

39

Robust standard errors in parentheses

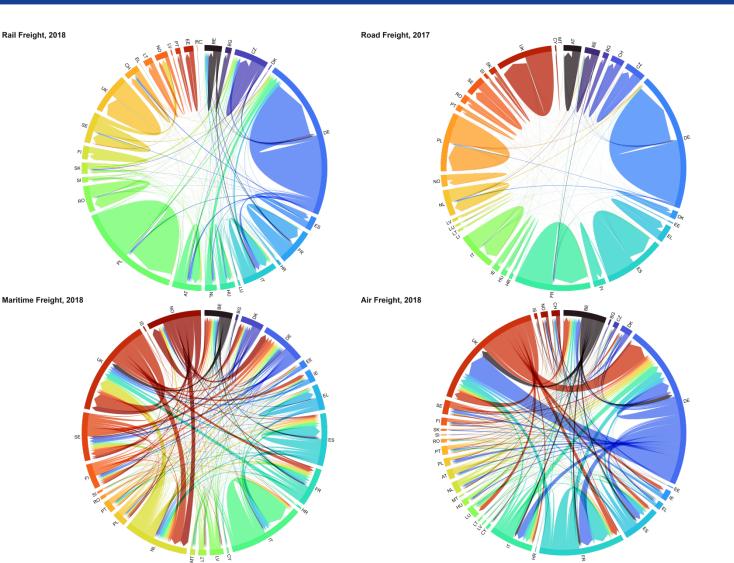
Results. Trade of Goods

4

Gravity equation, by product (NST). Pooled regressions with FE. PPML. 2010-2018. Mill. €.

Dep. variable						Trade	e flow/(GDPi	*GDPj) – PP	ML					
	NST1	NST2	NST3	NST4	NST5	NST6	NST7	NST8	NST9	NST10	NST11	NST12	NST13	NST14
Intra	3.167***	-1.153***	2.958***	2.623***	2.463***	2.220***	1.484***	1.590***	3.429***	2.183***	3.461***	2.567***	3.354***	2.757***
	-0.159	-0.348	-0.316	-0.139	-0.159	-0.17	-0.388	-0.139	-0.286	-0.167	-0.145	-0.156	-0.164	-0.264
Inter	2.494***	-0.191	0.859***	2.431***	1.866***	2.074***	1.793***	1.516***	2.380***	1.918***	2.427***	1.879***	3.005***	1.499***
	-0.105	-0.242	-0.22	-0.08	-0.098	-0.111	-0.18	-0.081	-0.208	-0.094	-0.087	-0.112	-0.106	-0.168
LnDist	-0.733***	-1.300***	-0.785***	-0.820***	-0.671***	-0.819***	-0.879***	-0.826***	-0.892***	-0.754***	-0.696***	-0.712***	-0.772***	-1.122***
	-0.044	-0.082	-0.084	-0.043	-0.05	-0.042	-0.113	-0.041	-0.068	-0.048	-0.043	-0.04	-0.042	-0.071
Contig	1.162***	-0.042	1.581***	0.819***	0.698***	0.794***	0.666***	0.347***	1.159***	0.435***	0.682***	0.516***	0.568***	0.759***
	-0.078	-0.11	-0.148	-0.066	-0.069	-0.053	-0.113	-0.049	-0.076	-0.058	-0.05	-0.061	-0.06	-0.116
Contig_C	0.875***	1.302***	-0.008	0.763***	0.324***	0.784***	1.140***	0.386***	1.060***	0.584***	0.430***	0.145**	0.592***	0.951***
	-0.064	-0.166	-0.133	-0.055	-0.062	-0.054	-0.122	-0.048	-0.085	-0.055	-0.052	-0.057	-0.061	-0.102
ComLang	0.318***	2.628***	1.961***	0.482***	0.474***	0.475***	0.857***	0.413***	0.603***	0.521***	0.487***	0.601***	0.204***	0.855***
	-0.074	-0.178	-0.201	-0.054	-0.065	-0.08	-0.113	-0.059	-0.147	-0.061	-0.068	-0.086	-0.075	-0.101
EU	1.497***	-0.344	2.072***	1.896***	2.823***	1.383***	1.473***	0.913***	2.755***	0.549***	1.511***	1.136***	1.105***	2.671***
	-0.2	-0.379	-0.285	-0.176	-0.171	-0.182	-0.289	-0.156	-0.345	-0.186	-0.222	-0.184	-0.26	-0.321
EUM	0.059	-0.273	-1.362***	0.356***	-0.395***	0.017	0.449***	0.291***	-0.142	-0.0184	-0.337***	-0.203***	-0.121	0.430***
	-0.088	-0.262	-0.316	-0.068	-0.073	-0.07	-0.141	-0.062	-0.108	-0.066	-0.064	-0.075	-0.079	-0.133
Island	-1.224***	0.0517	-0.846***	-1.699***	-0.678***	-0.919***	-0.440**	-0.360**	-1.012***	-1.081***	-0.503***	-0.527***	-0.046	-1.293***
	-0.178	-0.293	-0.235	-0.139	-0.189	-0.164	-0.223	-0.176	-0.203	-0.157	-0.134	-0.159	-0.24	-0.26
Coast	0.009	-2.091***	-0.894**	-0.373***	-0.569***	-0.300***	-0.679***	-0.335***	-0.395***	-0.380***	-0.466***	-0.154*	-0.021	-0.583**
_	-0.168	-0.196	-0.409	-0.112	-0.076	-0.087	-0.197	-0.063	-0.148	-0.097	-0.082	-0.09	-0.101	-0.236
Inst	0.0002	-0.314***	-0.053	0.05	-0.013	-0.139***	-0.362***	-0.102***	-0.098**	-0.102***	0.229***	-0.059*	-0.069*	0.021
	-0.045	-0.088	-0.085	-0.039	-0.033	-0.028	-0.058	-0.025	-0.045	-0.028	-0.032	-0.034	-0.04	-0.064
Outermost	0.379	4.280***	4.393***	1.103	0.888	2.597**	2.474***	1.228	5.618***	2.293**	0.775	1.156	-0.087	4.257***
	-0.771	-1.297	-1.016	-0.752	-1.052	-1.322	-0.951	-1.107	-1.322	-1.144	-1.351	-1.006	-0.941	-1.053
Island_c	-1.578***	4.521***	0.511	-0.417***	-1.371***	-0.468***	1.684***	-0.701***	0.321***	-0.072	-0.552***	-0.248**	-0.499***	-0.539***
	-0.13	-0.264	-0.324	-0.121	-0.111	-0.109	-0.189	-0.091	-0.117	-0.116	-0.086	-0.116	-0.116	-0.171
Nocoast_c	-0.926***	-2.349***	-1.746***	-0.763***	-0.213**	-0.441***	-1.587***	-0.034	-0.299**	-0.337***	0.449***	-0.288***	-0.112	-0.483***
	-0.101	-0.232	-0.148	-0.069	-0.084	-0.0772	-0.175	-0.069	-0.15	-0.073	-0.068	-0.0836	-0.091	-0.126
Constant	5.233***	14.82***	4.631***	5.829***	3.697***	5.536***	6.320***	7.502***	4.175***	6.810***	5.741***	6.420***	4.809***	6.725***
	-0.379	-0.6	-0.591	-0.366	-0.353	-0.339	-0.739	-0.308	-0.589	-0.387	-0.358	-0.306	-0.384	-0.544
Observations	790,324	771,764	792,098	788,840	792,988	793,584	787,951	793,584	790,912	793,286	793,584	792,988	790,615	787,951
R2 / Pseudo R2	0.951	0.981	0.985	0.936	0.814	0.906	0.891	0.829	0.967	0.869	0.9	0.881	0.877	0.984
Year FE	YES	YES	YES	YES	YES	YES	YES	YES						
Region FE	YES	YES	YES	YES	YES	YES	YES	YES						
Region-Year FE	YES	YES	YES	YES	YES	YES	YES	YES						

Results

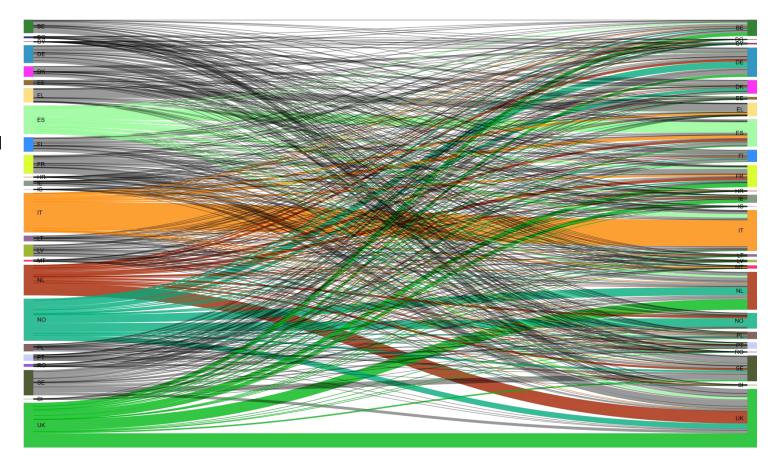

2. Interregional freight transport flows by mode

- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)

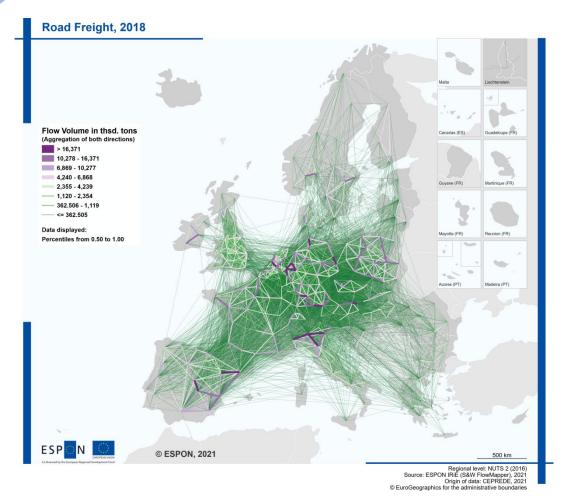
Results. Freight transport flows by mode

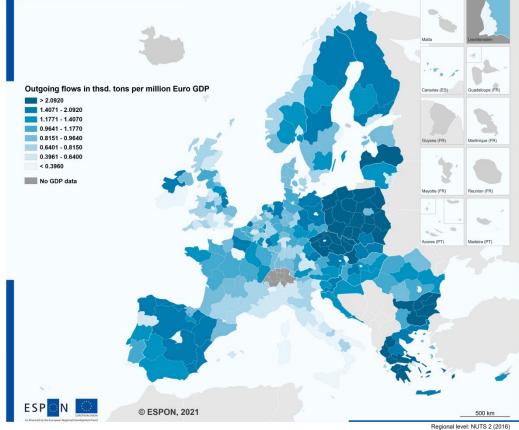
Rail Freight, 2018

- Results at country level (NUTS 0)
 - Freight transport flows by mode at the C2C level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - **Scope:** intra-national and inter-national flows
 - Modes: road, rail, maritime, air
 - Temporal scope: 2010 to 2018
 - Source: Processing of Eurostat data
 - Data features:
 - 32 X 32 OD matrixes for each year
 - Unit: transport volume carried in tons



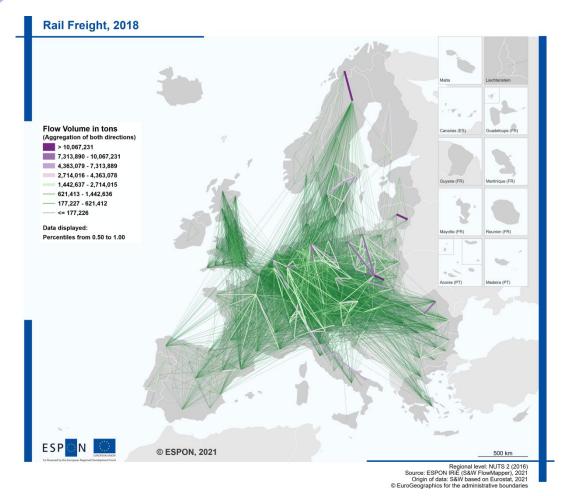
Results. Freight transport flows by mode

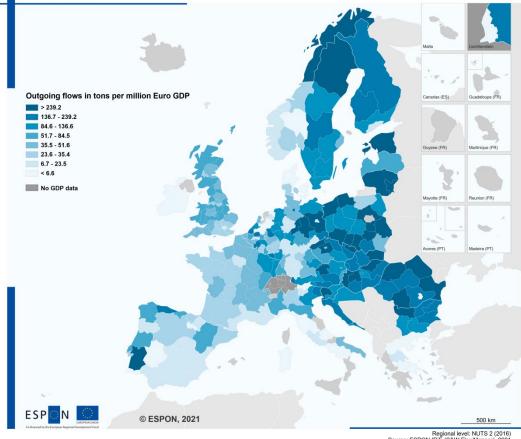

Results at regional level (NUTS 2)


- Freight transport flows by mode at the R2R level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - **Scope:** intra-national and inter-national flows
 - Modes: road, rail, maritime, air
 - Temporal scope: 2010 to 2018
 - **Source:** Processing of Eurostat data
- Data features:

- 329 X 329 OD matrixes for each year
- Unit: transport volume carried in tons

Results. Freight transport flows by road

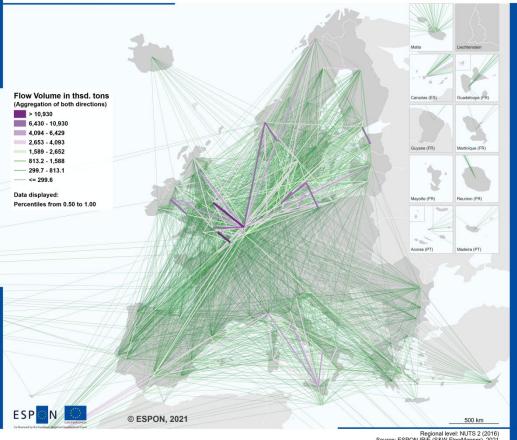




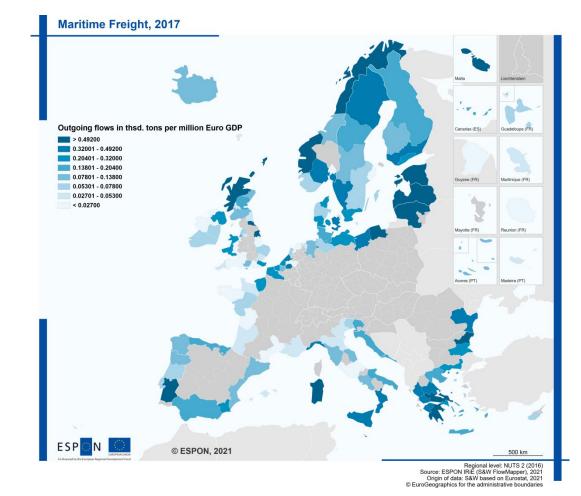
Road Freight, 2017

Regional level: NUTS 2 (2016) Source: ESPON IRIE (5&W FlowMapper), 2021 Origin of data: CEPREDE, 2021 © EuroGeographics for the administrative boundaries

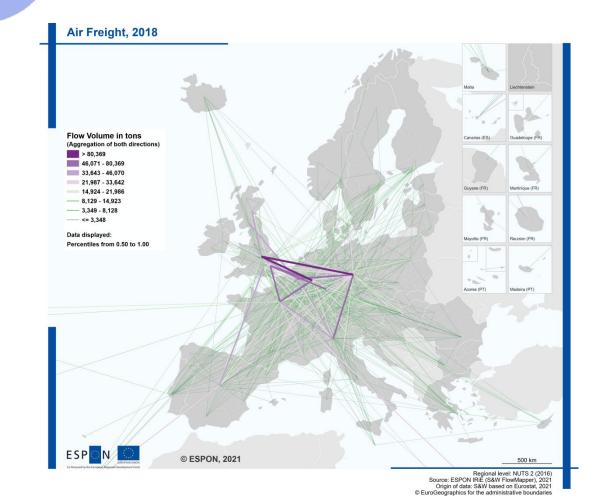
Results. Freight transport flows by rail

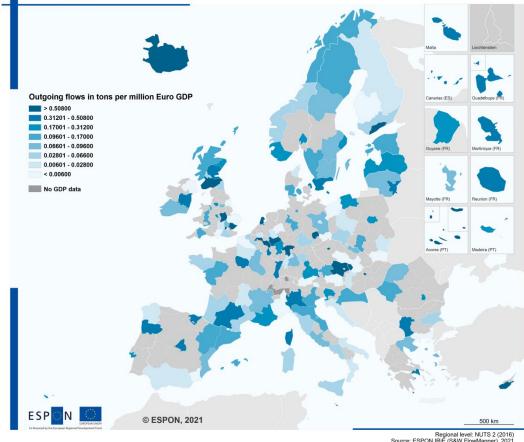


Rail Freight, 2017


Regional level: NUTS 2 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: S&W based on Eurostat, 2021 © EuroGeographics for the administrative boundaries

Results. Maritime freight transport flows


Maritime Freight, 2018

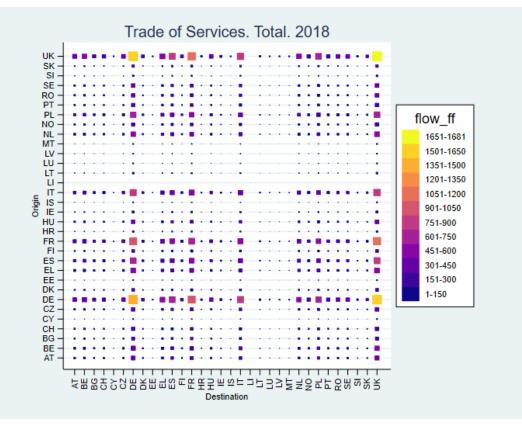


Regional level: NUTS 2 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: S&W based on Eurostat, 2021 © EuroGeographics for the administrative boundaries

Results. Freight transport flows by air

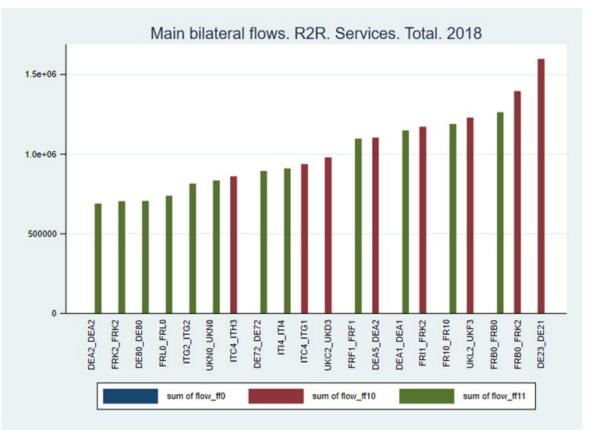
Air Freight, 2017

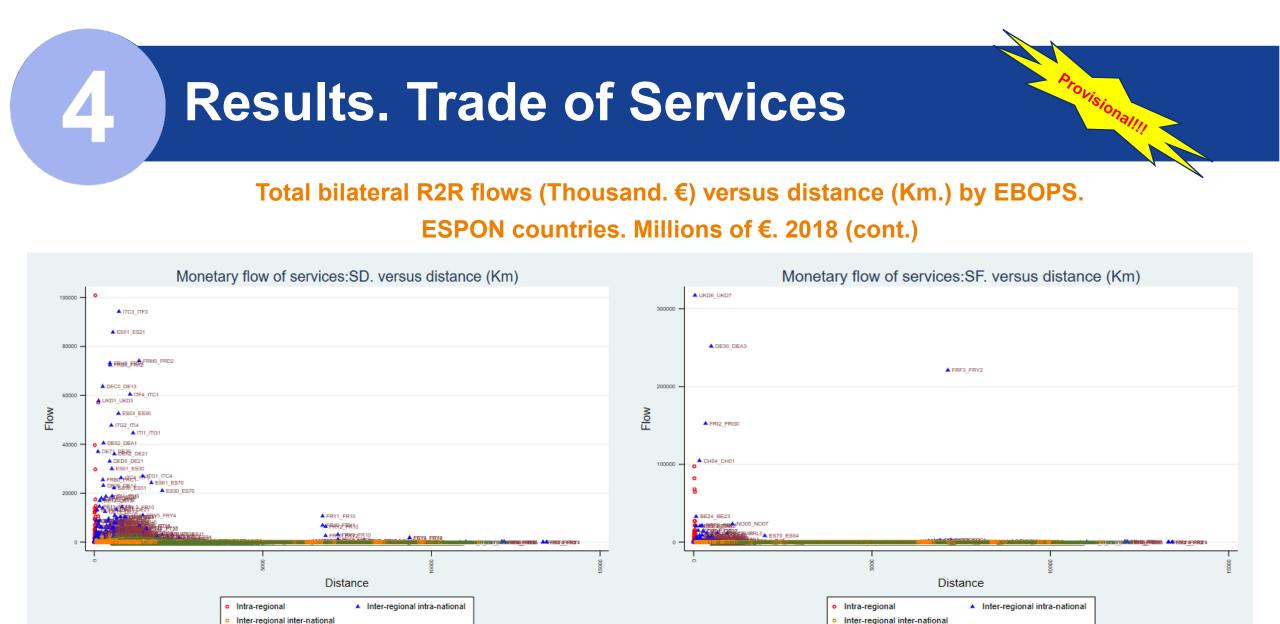
Regional level: NUTS 2 (2016) Source: ESPON IRIE (5&W FlowMapper), 2021 Origin of data: S&W based on Eurostat, 2021 © EuroGeographics for the administrative boundaries


Results

3. Interregional trade flows of services

- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)
- Analysis (provisional)


- Results at country level (NUTS 0)
 - Trade flows of services
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - Temporal scope: 2010 to 2018
 - Sectoral detail: Total + 12 sectors EBOPS-2010.
 - Source: Own elaboration based on WTO-UNCTAD/FIGARO.
 - Data features:
 - 32 X 32 OD matrixes for each year
 - Variable under consideration: trade flows (Mill.€)
 - Intra-national and inter-national flows included. Inter-national are harmonized to BATIS (WTO-UNCTAD-OECD). Intra-national flows take FIGARO total output (country-sector-year) as reference.


C2C Intra & inter-national flows. All service sectors. 2018. Millions of €.

- Results at regional level (NUTS 2)
 - Trade flows of services
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - **Temporal scope:** 2010 to 2018
 - Sectoral detail: Total + 12 sectors EBOPS-2010.
 - Source: Own elaboration based on WTO-UNCTAD/FIGARO.
 - Data features:
 - 329 X 329 OD matrixes for each year
 - Variable under consideration: trade flows (Mill.€)
 - Intra-national and inter-national flows included. Inter-national are harmonized to BATIS (WTO-UNCTAD-OECD). Intra-national flows take FIGARO total output (country-sector-year) as reference.

The main R&R flows. All service sectors. 2018. Millions of €.

$$\begin{split} \hat{S}_{ijt}^{eukt} \\ &= \exp[\beta_0 + \beta_1 LnGVA_{ikt} + \beta_2 LnGVA_{jkt} + \beta_3 LnFacebook_{ij} + \beta_4 LnPost_{ij} + \beta_5 LnFreight_{ij} \\ &+ \beta_6 LnPassengers_{ij} + \beta_7 LnDirect_investments_{ij} + \beta_8 LnLabour_{ij}] + \varepsilon_{ijt} \end{split}$$

	Dep. variable				Se	ector spec	ific interna	ational trac	le flow (R	2R)				
		SA	SB	SC	SD	SE	SF	SG	SH	SI	SJ	SK	SL	SOX
	Ln(facebook)	0.346***	0.138***	0.224***	0.331***	0.492***	0.519***	0.950***	0.494***	0.375***	0.382***	0.539***	0.309***	0.518***
		(0.0576)	(0.0228)	(0.0208)	(0.0356)	(0.0147)	(0.0417)	(0.0546)	(0.0374)	(0.0170)	(0.0133)	(0.0154)	(0.0129)	(0.0202)
	Ln(post_tons)	-0.0299	0.0468***	-0.0150		0.0510***	0.0347**	0.0690**	0.0172				0.0349***	0.0335***
V		(0.0231)	(0.0125)	(0.00959)	(0.0112)	(0.00709)	(0.0148)	(0.0332)	(0.0279)	(0.00805)	(0.00736)	(0.00977)	(0.00592)	(0.00807)
4	Ln(freight)	0.0224***	0.0324***		0.0219***			-0.0220***					-0.00108	0.0123***
		(0.00864)	(0.00593)	. ,	. ,	. ,	(0.00419)	, ,	. ,	. ,	(0.00341)	· ,	、 ,	(0.00239)
	Ln(Direct_Inv)	0.101***	0.0806***	0.0339***	0.0188***	0.0435***	0.000452	-0.0151*	0.0188*	0.00494	0.0354***	0.0353***	0.00133	0.0355***
		(0.00899)	(0.00436)	(0.00470)	(0.00525)	(0.00298)	(0.00284)	(0.00862)	(0.0106)	(0.00462)	(0.00305)	(0.00451)	(0.00223)	(0.00183)
	Ln(all_pas)	0.552***	0.309***	0.111***	0.549***	0.00808*	-0.0163***	0.533***	-0.0185	-0.00716*	-0.0140***	0.00809*	-0.0227***	0.0662***
		(0.0212)	(0.00483)	(0.00450)	(0.0135)	(0.00488)	(0.00419)	(0.0453)	(0.0174)	(0.00433)	(0.00296)	(0.00457)	(0.00394)	(0.00240)
	Ln(labor)	0.0550	0.136***	0.0270	-0.0299	0.542***	0.249***	0.445***	0.0408	0.340***	0.285***	0.377***	-0.0635***	0.122***
		(0.0543)	(0.0253)	(0.0285)	(0.0590)	(0.0201)	(0.0678)	(0.0406)	(0.0352)	(0.0452)	(0.0314)	(0.0267)	(0.0138)	(0.0175)
	Ln(GVA _i ^{ekt})	0.115**	-0.0598***	0.183***	0.134***	0.631***	0.417***	-15.83***	0.477***	0.632***	0.636***	0.466***	0.842***	0.426***
		(0.0515)	(0.0149)	(0.0155)	(0.0256)	(0.0186)	(0.0109)	(0.469)	(0.0400)	(0.0129)	(0.0120)	(0.0153)	(0.0132)	(0.0103)
	$Ln(GVA_j^{ukt})$	0.260***	0.00797	0.275***	0.338***	-14.10***	0.319***	0.950***	0.423***	0.531***	0.638***	0.589***	0.891***	0.451***
		(0.0538)	(0.0126)	(0.0202)	(0.0245)	(0.280)	(0.0146)	(0.0546)	(0.0546)	(0.0125)	(0.0119)	(0.0158)	(0.0127)	(0.0161)
	Constant	-11.87***	-3.640***	-7.528***	-9.055***	0.492***	-9.378***		-12.21***	-10.52***	-12.94***	-12.70***	-22.79***	-9.954***
		(1.089)	(0.261)	(0.303)	(0.426)	(0.0147)	(0.199)	(0.0332)	(0.782)	(0.148)	(0.199)	(0.206)	(0.225)	(0.183)
	Observations	82,810	82,810	82,810	82,810	82,810	82,810	82,810	82,810	82,810	82,810	82,810	82,810	82,810
	Pseudo R2	0.746	0.543	0.600	0.838	0.276	0.223	0.342	0.140	0.468	0.557	0.300	0.230	0.593
ESPO	Country FE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Region FE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Provisionali_{li}

Gravity equation. OLS & PPML. Total services. 2010-18. Units: Mill. of €.

$$\begin{split} S^{eukt}_{ij} &= \beta_0 + \beta_1 GDP_{it} + \beta_2 GDP_{jt} + \beta_3 INTRA_{ij} + \beta_4 INTER_{ij} + \beta_5 CONTIG_{ij} \\ &+ \beta_6 DIST_{ij} + \beta_6 X_{ij} + \mu_{it} + \mu_{jt} + \varepsilon_{ijt} \end{split}$$

Dep. Var	S ^{eukt} Eq.(24).	S ^{eukt} Eq.(25)	$\frac{S_{ij}^{eukt}GDP_t}{GDP_{it}GDP_{jt}}$ Eq.(26)
Estimator	OLS	PPML	PPML
Ln(GDP _i) Ln(GDP _j)	0.485*** 0.548***		
Intra	5.078***	6.253***	6.679***
Inter Ln(Dist _{ii})	4.151*** -0.679***	5.118*** -0.277***	5.479*** -0.310***
Contig_r	0.731***	0.397***	0.186**
Contig_c	0.121***	0.217***	0.559***
Comlang_off	0.393***	0.792***	1.156***
EU	-0.118***	-0.342***	0.219***
UEM	0.157***	0.247***	0.228***
Island	0.575***	0.261***	0.499**
Coast	0.0775***	-0.0549	0.0609
Inst	-0.0271***	-0.0290	-0.232
Outermost Island_c	0.193*** 0.270***	0.278 0.311***	0.494 0.179**
Nocoast_c Constant	-0.0750*** -3.687***	0.0492 0.305	0.0988 1.319***
Observations	790,916	790,916	792,396
R ² /Pseudo R ²	0.834	0.796	0.810
Year FE	NO	YES	YES
Country FE	NO	NO	NO
Contry-Year FE	NO	NO	NO
Region FE	NO	YES	YES
Region-Year FE	NO	YES	YES

Results

4. Interregional flows of people: migration

- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)

Results. People: Migration

Results at country level (NUTS 0)

- Migration at the C2C level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - Scope: intra-national and inter-national flows
 - Temporal scope: 2010 to 2018
 - Source: Eurostat, NSI.
- Data features:
 - 32 X 32 OD matrixes for each year
 - Variable under consideration: interregional migrants flows.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Order		BE	BG	CZ	DK	DE	EE	IE	EL	ES	FR	HR	IT	CY	LV	LT	LU	HU	MT
1	BE	0	517	398	393	4934	186	397	821	2800	10326	100	2616	94	88	141	1171	424	19
2	BG	3582	0	960,979	932	39387	13	139	3250	8395	1911,736	30	5934	38,48921	555,1345	25	100	58	26,09711
3	CZ	577	216,0795	0	186	7190	13	362	738,7259	4272,515	427,0913	45	592	46,63428	194,8679	11	88	72	31,65327
4	DK	307	176	250	0	3265	89	198	143	1083	952	26	710	20	279	525	98	239	39
5	DE	4540	23785	6067	3322	0	779	2011	12641	16071	18691	11333	24268	335	4165	3713	2226	21330	159
6	EE	117	7	28	199	1209	0	159	2	50	47	1	137	6	17	9	60	9	2
7	IE	469	89	290	307	3259	129	0	186	1816	3636	72	1846	15	1137	2006	126	351	17
8	EL	854	165	131,7381	233	13717	12	114	0	4405,98	769,056	3	591	0	105,9274	23	122	39	32,8543
9	ES	6067	11080	4426,136	1447	21543	33	2254	4538,345	0	21156	28	9553	143,1445	4394,38	1294	308	224	97,48776
10	FR	17364	658,5966	764,1716	1091	20266	70	2265	2344,923	10545	0	90	3959	624,5534	628,1465	44	2909	380	528,3003
11	HR	208	1	30	39	10269	2	25	2	8	18	0	790	0	0	10	37	176	0
12	IT	4284	492	255	864	27188	51	1075	239	10382	5583	367	0	32	21	57	751	339	115
13	CY	69	39,85812	22,93383	30	395	5	100	0	2314,215	120,357	1	25	0	15,12262	20	8	28	14,03088
14	LV	251	150,3889	163,6026	884	7689	82	1217		2578,498	452,965	3	355	0	0	54	64	7	16,40911
15	LT	345	32	115	1511	6143	77	13048	315	3535	618	11	1091	218	233	0	90	21	17
16	LU	1810	22	66	113	2897	22	66	56	127	1509	7	450	1	32	21	0	46	14
17	HU	873	38	47	470	30015	8	676	20		285	206	989	59	0	6	138	0	14
18	MT	58	16,36641	14,83158	28	220	0	58	0	2231,945	50,93646	2	154	19,71537	14,10072	0	34	5	0
19	NL	10466	81,36901	235,3843	654	12460	19	569	904,0127	3520	3452,927	44	804	247,6205	63,69512	61	207	390	42,82454
20	AT	373	791	646	241	17859	23	175	239	466	659	974	1013	22	32	47	68	2015	18
21	PL	9769	992,8338	1885,846	3002	125861	13	3923		3351	339	50	7414	120,47		50	361	192	82,02034
22	PT	2684	185,357	187,6397	197	7257	13	272	750,4746		35132,8	4	475	126,1248	181,588	10	3845	30	31,85684
23	RO	6038	218,139	58,63468	2026	74585	3	1120	133	51823	405	50	92591	0	0	7	317	6581	0
24	SI	317	283	57	49	1886	3	40	14	63	133	1256	413	9	3	10	51	51	0
25	SK	936	5	629	204	8613	2	447	6		21	55	926	0	3	2	79	1213	4
26	FI	344	12	40	416	2185	1020	154	49	936	310	10	181	17	35	19	82	62	25
27	SE	505	115	123	5195	3600	145	393	346	1785	923	70	376	69	89	130	131	252	151
28	UK	2607	1637,297	1684,802	2698	16565	108	11798	3557,487	18675	20133	99	7194	1812,13	1503,187	1439	415	964	126,7707
29	IS	52	5	32	945	158	11	15	8	62	33	3	48	2	41	121	49	13	6
30	LI	8	0	1	1	21	0	1	2	17	2	0	22	0	0	0	0	0	0
31	NO	192	62	59	2783	1057	105	168	34	1499	444	20	173	17	119	418	31	146	22
32	СН	780	272,2901	277,1812	428	3879,067	9	199	410,5261	2179	1950,262	179	3296	69,45457	270,2307	13	40	127	50,37193

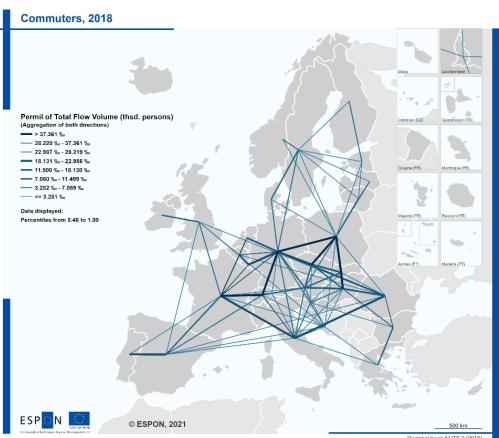
Results. People: Migration

Results at country level (NUTS 0)

- Migration at the R2R level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - Scope: intra-national and inter-national flows
 - Temporal scope: 2010 to 2018
 - Source: Eurostat, NSI.
- Data features:
 - 297 X 297 OD matrixes for each year
 - Variable under consideration: interregional migrants flows.

		Order	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
		Urder	-	-	-		-	-		-	-																
			BE	BG	BG	BG	BG	BG	BG	cz																	
Order		O/D	BE10	BE21	BE22	BE23	BE24	BE25	BE31	BE32	BE33	BE34	BE35	BG31	BG32	BG33	BG34	BG41	BG42	CZ01	CZ02	CZ03	CZ04	CZ05	CZ06	CZ07	CZ08
1	BE	BE10		0		-	-	-	0	0	0	0		3,871881													
2	BE	BE21	0		0	-			0	0	0	0		6,039385													
3	BE	BE22	0	0		0	-	-	0	0	0	0		2,88433													
4	BE	BE23	0	0			0	0	0	0	0	0		4,934917													
5	BE	BE24	0	0				0	0	0	0	0		3,707857													
6	BE	BE25	0	-	-	-	-		0	0	0	0		3,978014													
7	BE	BE31	0	-	-	-	-	-		0	0	-		1,306519													
8	BE	BE32	0	-	-	-	-	-	0		0	0		4,49506													
9	BE	BE33	0	0	0				0	0		0		3,685722													
10	BE	BE34	0	0	0	0	0	0	0	0	0		0	0,930228	1,012071	1,372997	1,52848	6,192632	1,799704	4,817974	1,568203	0,56682	0,717973	0,510138	0,850231	0,415668	0,434562
11	BE	BE35	0	0	0	0	0	0	0	0	0	0		1,632864	1,776526	2,410074	2,683001	10,87017	3,159089	8,457176	2,752728	0,994962	1,260285	0,895466	1,492443	0,729639	0,762804
12	BG	BG31	83,52818	41,31384	29,66467	17,1399	23,88834	13,11302	11,71817	53,8932	40,63476	10,23468	9,180902		1234	539	456	3479	572	31,71439	15,48926	9,735075	7,853202	9,20429	8,275417	2,605671	4,813253
13	BG	BG32	129,6851	64,1435	46,05709	26,61125	37,08882	20,35915	18,19353	83,6741	63,08916	15,89027	14,25419	1422		1923	992	1645	586	49,23947	24,04849	15,11459	12,19281	14,2905	12,84834	4,04554	7,473012
14	BG	BG33	141,8945	70,18241	50,39323	29,11662	40,58062	22,2759	19,90639	91,55176	69,02881	17,38629	15,59617	871	2777		1531	1721	842	53,87522	26,31258	16,53758	13,34073	15,6359	14,05797	4,426416	8,176573
15	BG	BG34	141,3131	69,89484	50,18675	28,99731	40,41434	22,18463	19,82483	91,17663	68,74597	17,31505	15,53227	650	1199	1183		2301	2686	53,65447	26,20477	16,46982	13,28606	15,57184	14,00037	4,408279	8,14307
16	BG	BG41	175,6482	86,87729	62,38069	36,04283	50,23387	27,57486	24,6417	113,3299	85,44928	21,52211	19,30617	6382	3328	2681	4458		5944	66,69097	32,57178	20,47152	16,5142	19,35535	17,40206	5,479365	10,1216
17	BG	BG42	222,9033	110,2501	79,16314	45,73953	63,74842	34,9934	31,27112	143,8194	108,4379	27,31226	24,50016	740	795	687	2241	2752		84,63302	41,33465	25,97902	20,95706	24,56257	22,08378	6,953493	12,84465
18	cz	CZ01	28,79034	14,23998	10,22476	5,907748	8,233788	4,51977	4,038998	18,57581	14,00591	3,52767	3,164456	3,126053	3,401088	4,61399	5,136497	20,8105	6,04795		7451	2545	3242	2664	2210	1337	1468
19	cz	CZ02	20,68366	10,23034	7,345712	4,244266	5,915349	3,24711	2,901712	13,3453	10,06218	2,534362	2,273421	2,245831	2,443423	3,3148	3,690181	14,95075	4,34499	16967		1565	2077	2304	1265	691	817
20	cz	CZ03	14,33214	7,088814	5,089997	2,94094	4,098868	2,24999	2,010657	9,247237	6,972294	1,756112	1,5753	1,556183	1,693098	2,296893	2,557003	10,35969	3,010734	1680	1211		1559	602	1007	278	341
21	cz	CZ04	12,39274	6,12957	4,401228	2,542978	3,544217	1,945526	1,738579	7,995919	6,028817	1,518478	1,362134	1,345603	1,463992	1,986082	2,210995	8,957836	2,603328	1836	1377	1133		1155	517	278	328
22	cz	CZ05	19,02548	9,410185	6,756816	3,904009	5,441122	2,986793	2,669085	12,27543	9,255508	2,331185	2,091163	2,065785	2,247536	3,049056	3,394344	13,75217	3,996658	2277	1962	602	1415		1310	690	482
23	cz	CZ06	16,15517	7,990503	5,737439	3,315025	4,62024	2,536186	2,26641	10,42348	7,859163	1,979487	1,775677	1,754128	1,908459	2,589056	2,882251	11,67743	3,393696	1259	769	991	580	1158		1781	1108
24	cz	CZ07	9,823042	4,858571	3,488611	2,015678	2,809305	1,542111	1,378075	6,337923	4,77871	1,203614	1,079688	1,066585	1,160425	1,574258	1,752533	7,100381	2,063514	458	274	212	297	556	1623		1505
25	cz	CZ08	22.96245	11.35745	8.155015	4,711872	6.567063	3.604856	3.221404	14,8156	11,17077	2.813581	2.523891	2,493262	2.712623	3.680003	4.096741	16.59793	4.823693	409	241	187	274	216	571	1201	
26	DK	DK01												6.020001						72.46714	14.41755	0.758818	12,14109	4 932319			3.035273
27	DK	DK02	6.029255	2.982128	2.141264	1,237197	1.724315	0.946528	0.845845	3.890135	2,93311	0.738762	0.662699	1,002558	1.090765	1.479755	1.647329	6.674146	1.939641	12.06853	2.401068	0.126372	2.021952	0.821418	1.137348	0.568674	0.505488
28	DK	DK03												2.164008													
29	DK	DK04	15,83508	7.832181	5.623759	3 249342	4.528695	2.485935	2.221504	10,21695	7,703443	1.940266	1,740494	2,633093	2.864756	3.88639	4.326501	17.5288	5.094223	31,69646	6.306101	0.3319	5,310401	2.15735	2.9871	1.49355	1.3276
30	DK	DK05												0,934987												0 530346	0.471418
31	DE	DE11												84.02761													
32	DE	DE12												57,22917													
33	DE	DE13												46,03869													
34	DE	DE14												37,85236													
35	DE	DE21												92,69186													
36	DE	DE22												25.19394													
37	DE	DE23												23,02276													
38	DE	DE23												22,89303													
39	DE	DE25												36.09084													
40	DE	DE26												27,97962													
41	DE	DE20												38,2074													
42	DE	DE30												70,44063													
43	DE	DE40												52,87997													
44	DE	DESO												13,99664													
45	DE	DEGO												36,6507													
46	DE	DE00												80,23144													
40	DE	DE72												22,06689													
48	DE	DE72 DE73												25,95864													
49	DE	DE80												34,698													
50	DE	DE91												33,94013													
51	DE	DE91 DE92												44,99406													
51	DE	DE92 DE93												35,87918													
52	DE	DE93 DE94												35,8/918 52,32693													

Results

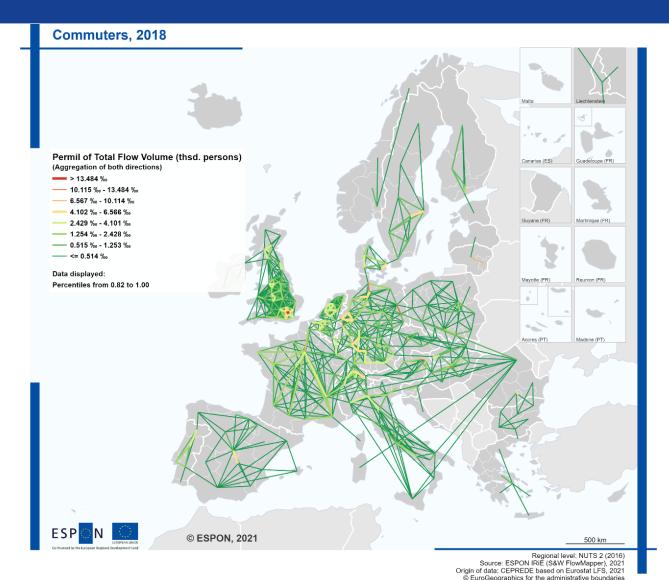

5. Interregional flows of people: labour flows (commuting)

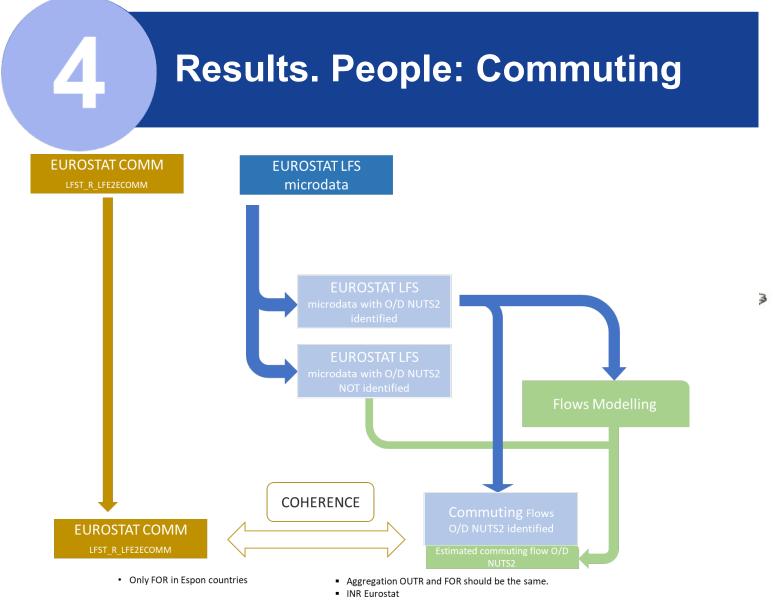
- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)
- Typologies
- Analysis

Results. People: Commuting

- Results at country level (NUTS 0)
 - Commuting at the C2C level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - Scope: intra-national and inter-national flows
 - Temporal scope: 2010 to 2018
 - Source: Eurostat (LFS).
 - Data features:

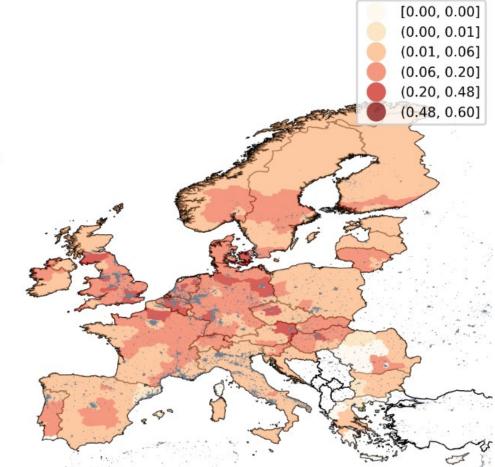
- 32 X 32 OD matrixes for each year
- Variable under consideration: people working in each region by region of residence.


Regional level: NUTS 0 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: CEPREDE based on Eurostal LFS, 2021 © EuroSeographics for the administrative boundaries


Results. People: Commuting

Results at regional level (NUTS 2)

- Commuting at the R2R level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - Scope: intra-national and inter-national flows
 - Temporal scope: 2010 to 2018
 - Source: Eurostat (LFS).
- Data features:


- 329 X 329 OD matrixes for each year
- Variable under consideration: people working in each region by region of residence.

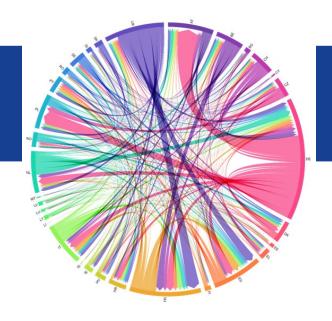
LFS. Commuting intensity by residence (NUTS2).

% of commuters (to other region or country) over total employed residents.2018.

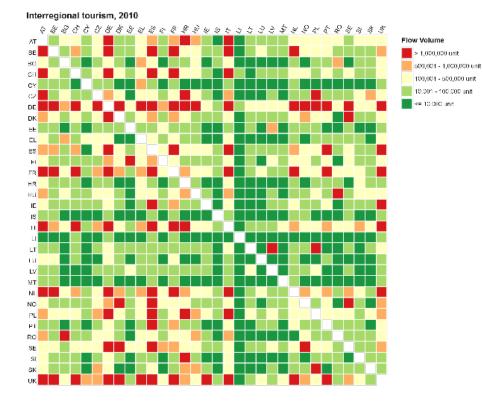
Econometric analysis

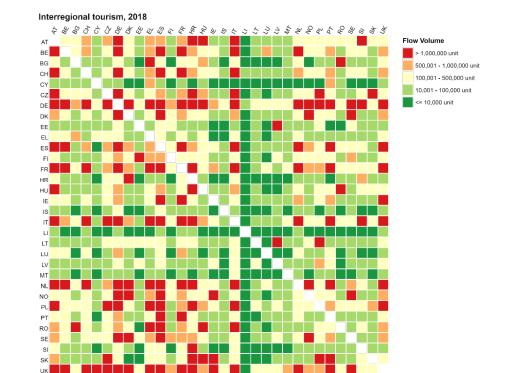
 $\log(\mathbf{F}_{ijt}) = \mu + X_{i,t}\beta + X'_{j,t}\beta' + X''_{i,j,t}\beta'' + \gamma_t + \varepsilon_{i,j,t}$

		Model 1		Model 2		Model 3		Model 4		Model 5		Model 6	
Deputte Depute		-0.0003		-0.0004		-0.0004	**	-0.0004		-0.0003		-0.0002	de de
Results. People:	Dist.	-13.769	**	-12.986	**	-13.195	**	-14.165	**	-24.501	**	-56.088	**
Commuting		4.6871	**	4.8502		4.8523	**	4.9666	**	4.9935	**	4.6548	**
	Neighb.	38.064	~~	44.48	~ ~	44.599	~~	46.153	~ ~	48.638	~~	54.567	~~
		-0.0000421		0.0000221		-0.00000058		-0.000025		-0.000021			
	Density_i	-3.6806	**	1.1595		-0.0357		-5.0149	**	-5.0626	**		
		0.00000876		0.0000528		0.00003777		0.0000132		0.00001684			
Clusters and type of commuting	Density_j	0.7837		3.2143	**	2.5467	**	1.7211	*	2.567	**		
		0.0318		0.0219		0.017		0.0105		0.0231			
flows: OUTR +FOR.	Migration_i	5.2289	**	3.4498	**	2.9302	**	2.199	**	5.9770	**		
		-0.003		-0.0062		-0.0084	*	-0.0043		0.0045			
	Migration_j	-0.5685		-1.173		-1.6568	*	-1.1196		1.3379			
	A	-0.014	**	-0.0342	**	-0.0349	**	-0.0358	**	-0.0316	**		
	Age_i	-3.4224 -0.0191	~~	-11.719 -0.0286	~ ~	-11.957	~ ~	-11.124 -0.0327	~~	-12.56 -0.029	~ ~		
5	Ago i	-6.5716	**	-0.0286 -9.4587	**	-0.0289 -9.6095	**	-0.0327 -10.694	**	-0.029 -12.311	**		
amin's is a	Age_j	0.0709		0.0404		0.0247		0.0297		-12.311			
	Empl.	6.1581	**	3.4569	**	2.3916	**	2.9469	**				
		-0.0027		-0.0009		-0.0009		0.0002					
	Wage dif.ij	-9.2962	**	-3.9227	**	-3.9519	**	1.3667					
		-0.119		0.0442		-0.0057							
	INNOVATION_i	-6.361	**	2.1724	**	-0.4318							
		0.0009		0.1237		0.0899							
	INNOVATION_j	0.0609		8.7934	**	8.472	**						
		0.0115		-0.0812									
	INFR_i	0.9164		-4.3073	**								
		0.0224	+	-0.056	**								
	INFR_j	1.8954	^	-3.8247	~ ~								
	Driego i	0.0022 5.026	**										
and the second sec	Prices_j	0.2626											
*	Euro	13.834	**										
	R2:	0.3916		0.3764		0.3754		0.3675		0.354		0.2896	
-	R2 (Between):	0.4665		0.8809		0.8968		0.9174		0.8494		0.1158	
	R2 (Within):	-0.008		-0.008		-0.0081		-0.0104		-0.0135		0	
	R2 (Overall):	0.4496		0.8618		0.8777		0.9004		0.8346		0.115	
	Log-likelihood	-251400		-338600		-338800		-439200		-544500		-1092000	
	Nº obs	177253		220486		220486		283416		361216		770004	

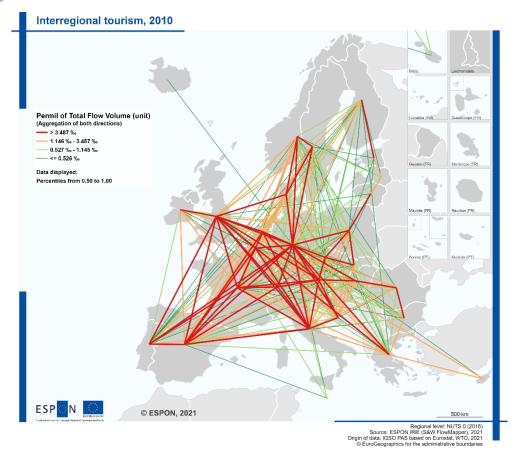


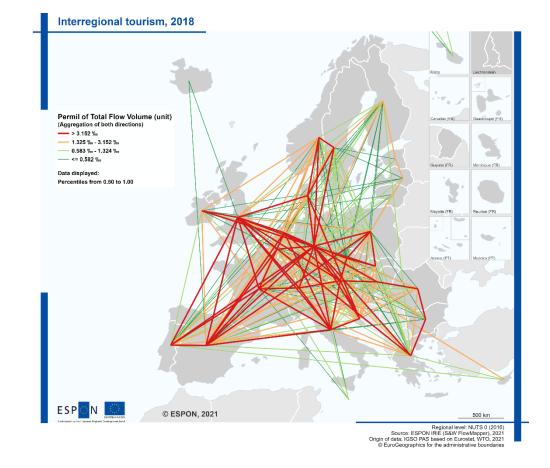
Results


6. Interregional flows of people: tourism

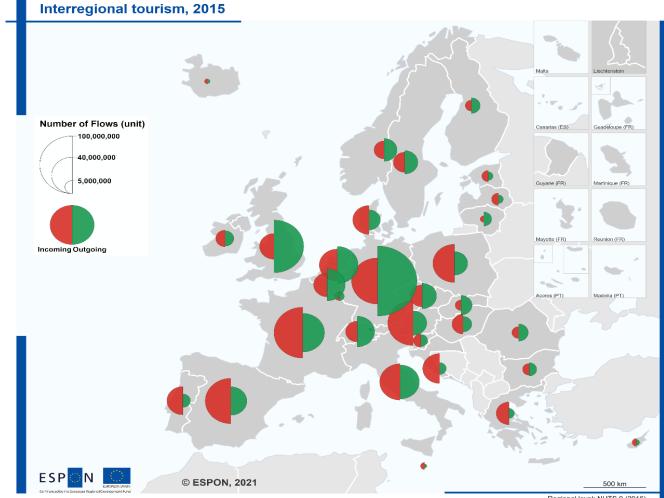

- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)
- Analysis

- Results at country level (NUTS 0)
 - Tourism at the C2C level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - **Scope:** intra-national and inter-national flows
 - Temporal scope: 2010 to 2018
 - Source: Eurostat, UNWTO.
 - Data features:
 - 32 X 32 OD matrixes for each year
 - Variable under consideration: interregional tourism flows.


		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Order		BE	BG	CZ	DK	DE	EE	IE	EL	ES	FR	HR	IT	CY	LV	LT	LU	HU	MT	NL	AT
1	BE		74 685	175 059	55 839	******	12 081	89 333	339 836	*****	******	218 889	1 104 115	24 125	34 271	12 800	362 141	105 259	24 296	*****	1 0 4 2
2	BG	31 051		41 508	23 488	115 734	2 885	7 908	664 389	153 889	52 701	59 425	399 729	8 905	9 194	2 083	1 885	134 000	3 189	70 874	115
3	CZ	63 041	148 854		126 026	713 144	8 440	31 085	294 936	434 713	243 205	******	816 161	15 458	26 200	9 100	5 639	271 000	5 923	69 064	1 296
4	DK	120 484	69 058	232 045		*****	21 466	44 000	240 563	937 726	585 577	161 969	470 812	30 335	53 956	24 800	14 935	78 142	28 830	323 236	714
5	DE	******	667 011	*****	*****		177 357	381 000	*****	*****	******	******	8 960 697	139 190	175 677	159 200	231 238	******	126 193	*****	27 617
6	EE	12 371	9 365	24 215	10 354	76 089		2 498	13 842	68 731	13 459	10 215	36 388	970	746 194	67 000	899	10 519	1 510	31 714	38
7	IE	84 733	27 684	56 425	15 289	302 033	3 942		65 623	*****	573 990	58 058	348 638	10 527	18 797	6 400	5 454	26 796	25 185	248 890	122
8	EL	58 567	792 634	104 837	9 162	359 477	6 319	6 049		148 881	257 091	65 679	473 474	127 667	5 767	4 861	4 274	71 693	5 880	96 728	162
9	ES	762 232	48 362	426 619	329 875	******	33 065	214 000	155 302		******	460 896	2 484 031	3 959	18 654	16 600	28 239	231 986	67 842	990 419	606
10	FR	*****	146 386	553 144	530 890	******	38 107	344 000	868 346	*****		870 082	4 843 586	28 749	29 649	30 300	252 344	250 000	86 516	*****	1 1 3 2
11	HR	12 890	18 031	83 264	6 100	48 252	1 233	2 592	122 398	70 918	31 947		390 919	1 822	3 504	393	1 528	32 000	2 204	15 813	224
12	IT	568 505	102 252	740 234	376 720	******	45 740	214 000	843 613	*****	******	******		12 992	44 298	28 200	36 816	330 000	219 663	998 169	2 497
13	CY	10 008	18 606	15 751	2 879	27 019	694	2 062	574 764	52 234	27 987	2 272	26 008		4 787	844	711	6 439	9 445	13 362	18
14	LV	16 712	6 817	16 196	16 234	86 030	151 670	18 245	21 948	80 139	16 130	13 505	49 046	1 825		146 300	968	12 411	1 170	54 991	30
15	LT	28 934	7 537	91 050	33 737	142 523	68 920	55 092	16 295	95 270	38 128	39 568	102 708	2 546	*****		1 255	12 234	1 673	27 558	45
16	LU	176 158	4 080	9 940	16 792	470 799	1 562	13 048	18 593	97 693	271 807	7 672	89 597	3 374	5 064	922		3 005	2 016	85 782	110
17	HU	53 255	101 261	219 207	28 309	443 500	5 088	53 139	109 160	247 755	122 536	659 473	525 595	10 721	13 443	6 587	3 277		7 7 4 7	55 673	996
18	MT	10 562	5 517	3 426	2 078	22 586	522	4 135	9 651	59 289	24 899	2 222	58 598	4 358	3 742	354	795	4 587		11 341	10
19	NL	******	126 690	422 370	719 274	******	22 618	135 000	528 157	*****	******	630 837	1 592 483	34 212	24 193	13 900	347 839	224 000	33 425		3 851
20	AT	76 343	146 592	412 731	99 357	******	10 232	45 333	338 367	561 190	756 240	******	3 361 695	21 559	13 629	11 900	11 197	935 000	19 908	152 868	
21	PL	176 615	235 071	782 249	194 143	******	38 524	201 667	402 170	*****	309 875	******	1 124 044	18 439	169 382	166 000	10 890	556 000	12 070	180 231	772
22	PT	80 167	8 059	54 204	17 599	257 625	4 466	5 344	19 497	*****	917 430	56 465	284 028	1 161	11 030	2 900	15 246	31 128	4 320	116 049	
23	RO	75 418	******	104 322	83 733	331 076	2 365	26 083	257 939		223 226	119 359	672 377	19 980	7 496	4 098	4 993	912 000	4 280	8 607	576
24	SI	17 538	19 019	48 775	17 709	146 329	2 342	5 659	40 082	86 691	47 337	******	255 651	1 046	4 104	2 202	2 294	14 000	2 976	34 560	225
25	SK	21 580	78 048	681 487	6 768	163 498	2 919	14 032	49 406	108 149	62 370	688 054	411 974	5 061	10 054	3 374	1 549	586 000	3 942	19 952	289
26	FI	69 196	37 836	82 841	136 122	621 633	*****	44 645	205 282	507 161	275 975	54 323	217 226	32 886	163 224	65 700	5 120		11 922	106 824	169
27	SE	151 589	40 653	178 901		*****	170 231	62 667	281 069	*****	600 034	252 866	444 826	109 746	280 643	33 700	11 832	120 331	37 123	241 145	
28	UK	******	247 077	824 171		******	72 263	*****	*****	*****	******	529 658	3 163 036	996 046	71 069	65 200	106 809	319 000	415 099	*****	1 683
29	IS	12 220	1 888	6 438	2 474	73 943	1 308	1 456	2 913	71 123	28 905	2 769	11 279	144	5 313	1 459	1 265		145	13 734	
30	LI	3 629	0	1 586	1 598	26 654	131	562	3 577	10 487	33 192	2 752	5 339	174	729	69	608	1 575		6 926	_
31	NO	71 060	45 864	161 818	*****	868 092	82 256	66 300	187 319		342 467	178 849	264 516	63 347	98 870	25 500	4 587	61 466	15 006		167
32	CH	168 686	32 981	155 470	202 478	*****	13 469	64 667	274 418	*****	*****	320 939	3 183 639	41 744	11 698	4 600	36 244	175 000	21 522	393 295	2 462



Matrix of intensity of tourism flows between researched countries, 2018

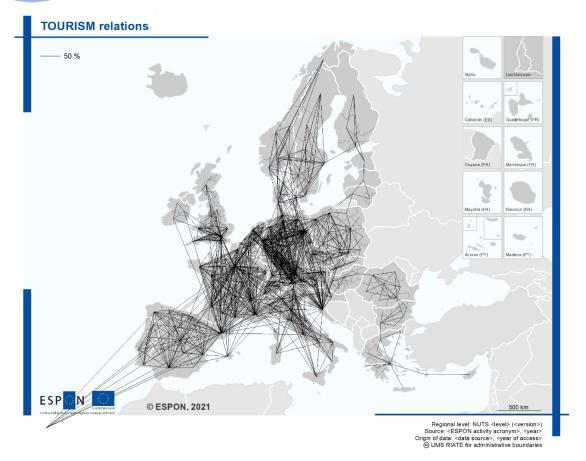

Matrix of intensity of tourism flows between researched countries, 2010

50% of the most important tourist connection between researched countries (number of tourists in both directions), 2010

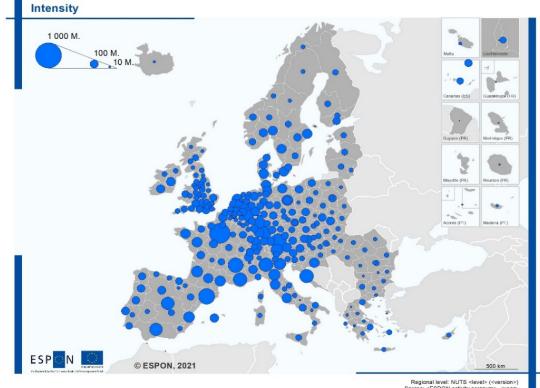
50% of the most important tourist connection between researched countries (number of tourists in both directions), 2018

Regional level: NUTS 0 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: IGSO PAS based on Eurostat, WTO, 2021 © EuroGeographics for the administrative boundaries

Differences between number of incoming and outgoing tourists in researched countries, 2015.

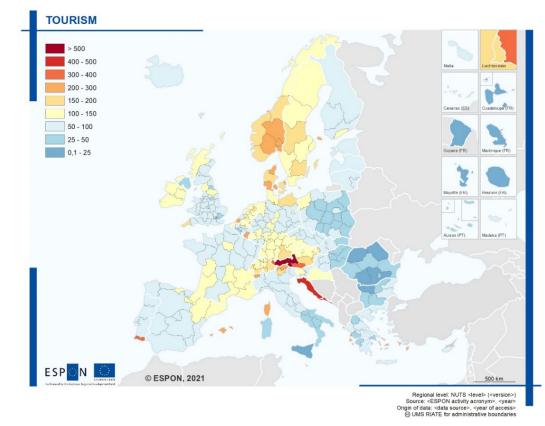

Results at regional level (NUTS 0)

- Tourism at the R2R level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - Scope: intra-national and inter-national flows
 - Temporal scope: 2010 to 2018
 - Source: Eurostat, UNWTO.

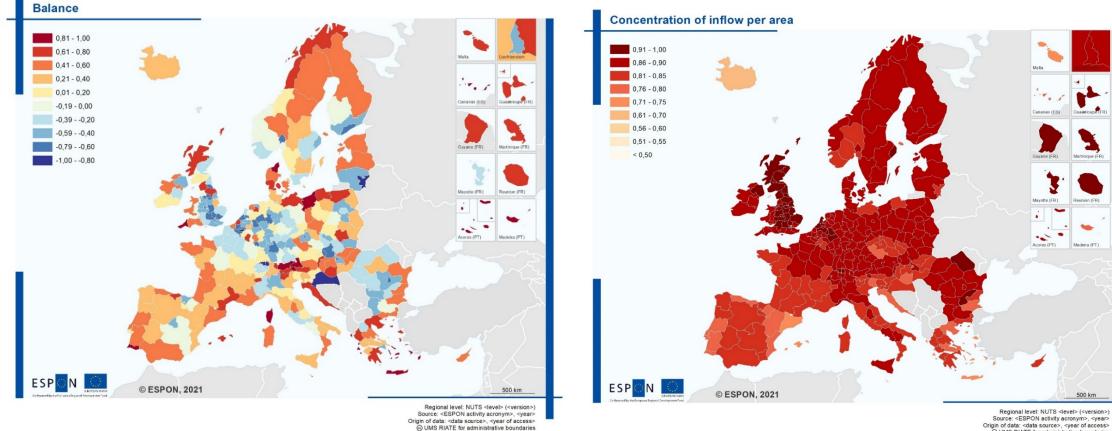

Data features:

- 297 X 297 OD matrixes for each year
- Variable under consideration: interregional tourism flows.

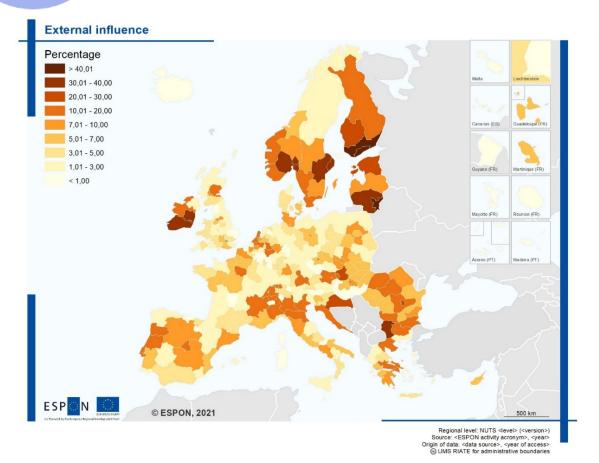
		Order	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
			BE	BE	BE	BE	BE	BE	BE	BE	BE	BE	BE	BG	BG	BG	BG	BG	BG	CZ	CZ	CZ	CZ	CZ	CZ	CZ	CZ
Order		O/D	BE10	BE21	BE22	BE23	BE24	BE25	BE31	BE32	BE33	BE34	BE35	BG31	BG32	BG33	BG34	BG41	BG42	CZ01	CZ02	CZ03	CZ04	CZ05	CZ05	CZ07	CZ08
1	BE	BE10		199253	139302	92867	142752	357809	43378	51215	97459	89083	65604	443	597	4099	5399	2223	1443	4846	2763	7956	3392	7012	3892	2126	1165
2	BE	BE21	137751		157303	73595	79791	311872	18626	29648	90268	75876	45803	436	588	4040	5315	2184	1418	4838	2758	7894	3400	7009	3864	2114	1160
3	BE	BE22	29294	47849		13817	17167	72472	5267	8128	55992	31455	17372	149	200	1373	1807	745	483	1726	983	2829	1223	2477	1360	740	405
4	BE	BE23	91369	104736	64646		39914	347061	11693	25256	45484	45228	27760	271	365	2509	3303	1357	882	2893	1649	4732	2017	4207	2338	1281	704
5	BE	BE24	154408	124839	88301	43880		180270	22694	24128	58628	50196	36917	246	331	2269	2988	1231	799	2708	1543	4443	1898	3913	2168	1184	648
6	BE	BE25	41891	52815	40347	41299	19512		6418	16332	30108	32770	18074	224	303	2085	2747	1126	733	2322	1324	3796	1610	3394	1895	1041	573
7	BE	BE31	52619	32681	30381	14416	25451	66501		12144	23399	21534	19388	95	127	872	1149	474	307	1038	592	1709	727	1498	833	454	248
8	BE	BE32	54624	45739	41225	27378	23792	148781	10678		33741	38029	28004	180	242	1660	2189	903	586	1921	1095	3169	1337	2780	1554	849	465
9	BE	BE33	28689	38435	78376	13608	15955	75701	5678	9312		51739	24749	175	235	1606	2116	875	566	2042	1163	3374	1445	2912	1607	871	475
10	BE	BE34	4806	5922	8071	2480	2504	15102	958	1924	9483		4847	40	54	367	484	201	130	458	261	768	321	651	364	197	107
11	BE	BE35	17000	17168	21406	7311	8844	40004	4142	6804	21787	23277		73	98	674	889	368	238	814	464	1349	570	1169	652	354	193
12	BG	BG31	221	286	323	120	127	513	20	59	268	364	175		20015	25660	26817	122533	40400	445	257	734	251	759	569	353	202
13	BG	BG32	210	272	306	114	120	489	19	56	252	341	165	13584		55353	51169	71352	41099	404	233	654	231	694	502	315	184
14	BG	BG33	255	332	371	139	146	597	23	68	305	411	200	11855	37680		67118	71666	42965	470	271	756	271	807	570	358	211
15	BG	BG34	297	385	431	162	170	696	27	79	355	481	233	16193	45526	87724		104475	77801	538	311	876	310	915	653	405	235
16	BG	BG41	1425	1840	2073	774	816	3310	131	379	1720	2353	1128	114798	98494	145327	162093		323159	2713	1565	4527	1543	4551	3392	2062	1167
17	BG	BG42	368	476	534	201	211	860	34	98	442	602	290	23652	35451	54442	75428	201934		666	384	1099	383	1120	812	496	284
18	CZ	CZ01	1658	2196	2618	877	961	3593	153	425	2177	2847	1329	1298	1628	10498	13702	6186	3723		250421	386152	174314	510602	274806	149517	96301
19	CZ	CZ02	641	849	1011	339	371	1390	59	164	840	1099	513	509	639	4115	5370	2425	1459	182746		147930	65023	207579	109594	59400	38149
20	CZ	CZ03	634	832	999	334	367	1366	59	164	841	1125	515	489	605	3877	5106	2351	1403	95527	50148		44547	117177	95247	49449	31374
21	CZ	CZ04	575	767	926	303	334	1229	53	146	769	991	462	355	450	2921	3813	1704	1034	84559	43223	87352		102596	60810	35737	24122
22	CZ	CZ05	610	810	951	325	353	1343	56	157	783	1018	483	583	736	4743	6141	2743	1654	105176	58592	97568	43565		140726	84394	54519
23	CZ	CZ06	667	876	1023	356	385	1481	62	173	849	1129	532	855	1050	6642	8664	4008	2365	80385	43930	112624	36668	199840		174224	81579
24	CZ	CZ07	390	513	594	209	225	874	36	101	490	647	308	580	719	4552	5878	2676	1586	40945	22290	54738	20174	112198	163106		100003
25	CZ	CZ08	385	509	585	208	222	869	35	100	481	631	303	613	770	4901	6267	2796	1671	37169	20177	48950	19193	102156	107642	140947	
26	DK	DK01	4188	5589	5996	2354	2394	10252	378	1086	4719	5976	3105	837	1175	8279	10724	4153	2785	13559	7767	20563	9085	21615	11729	6821	3916
27	DK	DK02	1148	1535	1649	645	656	2802	103	297	1295	1633	850	220	309	2172	2817	1094	733	3637	2082	5523	2453	5759	3117	1805	1033
28	DK	DK03	2367	3188	3400	1335	1355	5802	213	609	2649	3305	1737	411	575	4047	5259	2046	1370	6678	3822	10268	4521	10443	5714	3286	1870
29	DK	DK04	2323	3117	3306	1314	1327	5742	209	600	2580	3238	1704	420	589	4153	5391	2090	1403	6556	3753	10099	4400	10312	5686	3284	1874
30	DK	DK05	950	1270	1344	538	542	2362	85	246	1051	1327	697	179	252	1778	2307	891	599	2702	1547	4168	1801	4269	2369	1373	785
31	DE	DE11	8840	11262	13513	4633	5096	19187	830	2345	11820	17030	7419	1383	1827	12389	16398	6925	4425	28555	16218	51977	20043	38118	21799	11290	5967
32	DE	DE12	6133	7763	9512	3173	3543	13006	580	1628	8510	12590	5266	807	1071	7281	9630	4045	2594	15822	8993	27955	11174	21496	12173	6386	3403
33	DE	DE13	3642	4531	5328	1913	2086	8025	344	994	4718	7294	3110	548	723	4908	6523	2763	1767	9357	5329	16743	6350	12984	7642	4023	2144
34	DE	DE14	2999	3794	4462	1584	1722	6640	281	805	3882	5684	2505	526	691	4675	6208	2642	1682	9990	5683	18496	6780	13513	7983	4129	2176
35	DE	DE21	7999	10281	11874	4287	4592	18112	742	2123	10043	13974	6469	1915	2495	16758	22239	9570	6039	43681	24832	91167	28154	56450	34880	17204	8804
36	DE	DE22	1423	1845	2122	766	817	3236	131	375	1775	2413	1136	372	485	3257	4303	1845	1163	11371	6446	28570	7003	13581	8354	3923	1960
37	DE	DE23	1478	1924	2239	792	851	3320	137	387	1875	2526	1184	331	436	2941	3875	1642	1043	11040	6216	23861	7898	12721	7038	3423	1747
38	DE	DE24	1475	1936	2287	786	852	3262	136	382	1912	2519	1180	277	368	2495	3278	1373	878	8634	4861	15189	7088	10434	5392	2734	1431
39	DE	DE25	2817	3658	4328	1495	1625	6218	262	736	3668	4976	2285	529	699	4730	6237	2632	1678	14339	8103	27172	10600	17810	9804	4943	2576
40	DE	DE26	2387	3117	3802	1250	1384	5115	222	616	3255	4335	1958 2059	351	468	3179	4186	1750	1122	8393	4754	14562	6328	10984	5917	3076	1634
41	DE	DE27	2510	3205	3739	1336	1441	5617	234	669	3202	4546		512	671	4522	6003	2568	1628	10668	6064	20708	7141	14091	8441	4279	2227
42	DE	DE30	3993	5362	6053	2185	2302	9211	363	1021	4834	6065	3040	887	1203	8238	10674	4334	2808	24007	13692	32125	18334	37073	16396	9194 5088	2846
43	DE	DE40 DE50	2155	2890	3265	1178 839	1242	4967 3457	196 137	551 374	2612	3283 2097	1643 1110	484	655	4486 1809	5814	2363 954	1530	13480 3682	7687	17884 5634	10361	20784 5432	9093	5088	2846
44		DE50 DE60		2147	2410		886				1824			193	263		2358		623		2098		2686		2801		
45	DE	DE60 DE71	4578	6336	7066	2526	2649	10552 23431	412	1141 2914	5442	6460	3371	699	954	6578	8550 15818	3448	2251	13772	7853	20585	10068	20630 37492	10414 20446	5828 10805	3262
46	DE	DE71	11354	14766	18767	5830	6616	23431	1068	2914	16569	22096	9581	1319	1761	12007	15818	6586	4239	27614	15680	46989	20242	37492	20446	10805	5797

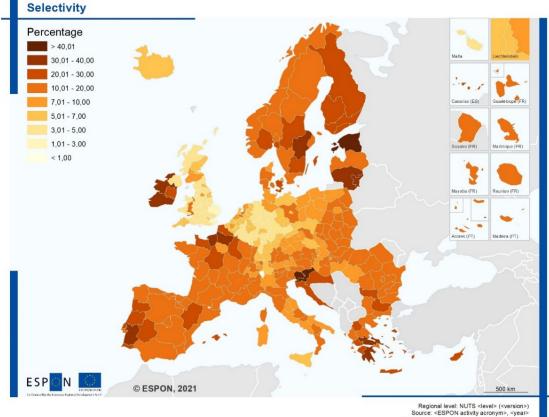

Relations with the largest absolute values of the tourism flow in the researched area

Regional level: NUTS <level> (<version>) Source: <ESPON activity acronym>, <year> Origin of data: <data source>, <year of access> @ UMS RIATE for administrative boundaries


Intensity

Weighted intensity of tourism flows in individual regions

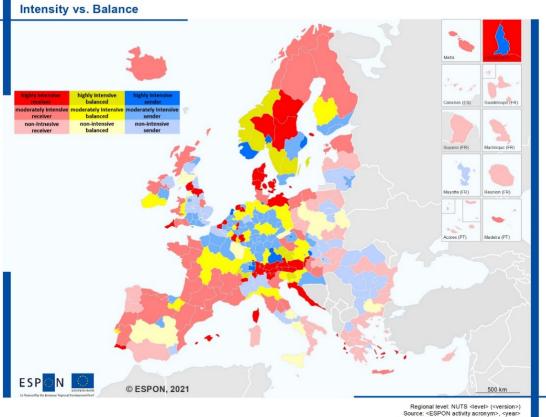

Weighted intensity

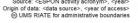


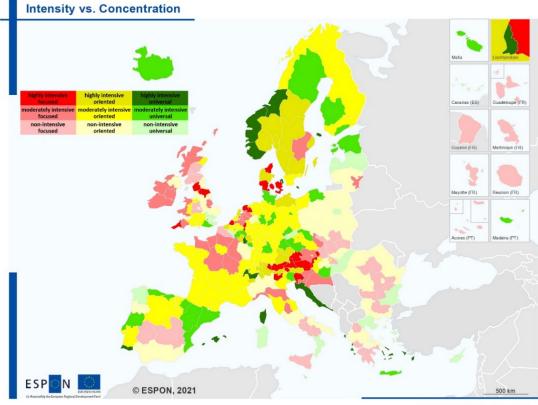
Origin of data: <data source>, <year of access> @ UMS RIATE for administrative boundaries

Concentration of inflow per area

Balance of tourism flows

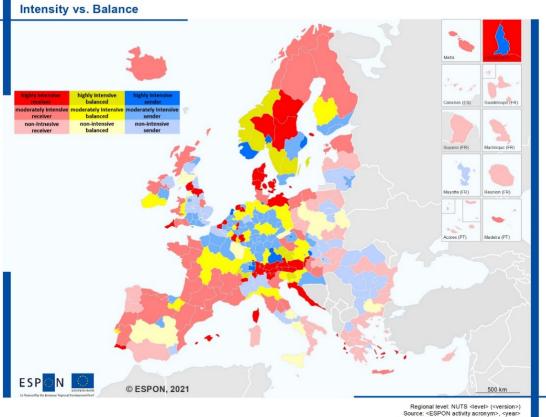


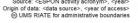


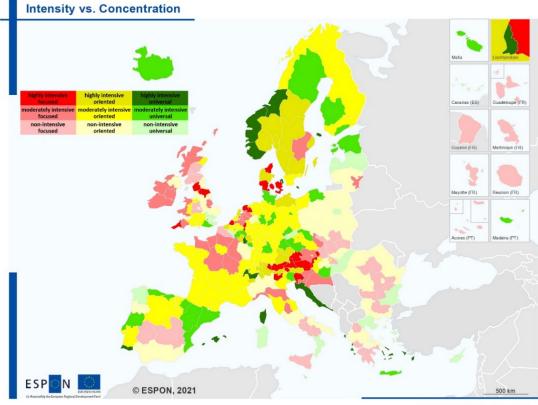

Regional level: NUTS <level> (<version>) Source: <ESPON activity acronym>, <year> Origin of data: <data source>, <year of access> @ UMS RIATE for administrative boundaries

External influence

Selectivity




Regional level: NUTS <level> (<version>) Source: <ESPON activity acronym>, <year> Origin of data: <data source>, <year of access> @ UMS RIATE for administrative boundaries


Intensity vs. Concentration

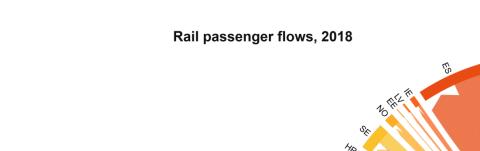
Intensity vs. Balance

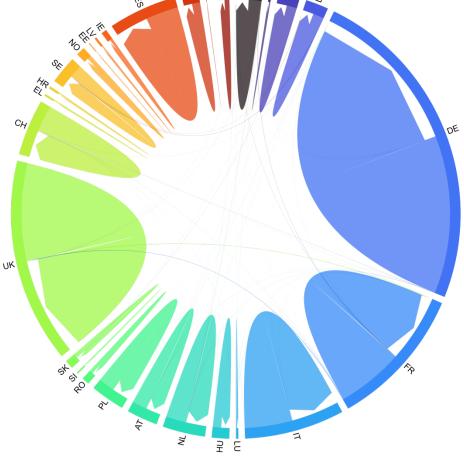
Results. People: Tourism

Regional level: NUTS ⊲level> (<version>) Source: <ESPON activity acronym>, <year> Origin of data: <data source>, <year of access> @ UMS RIATE for administrative boundaries

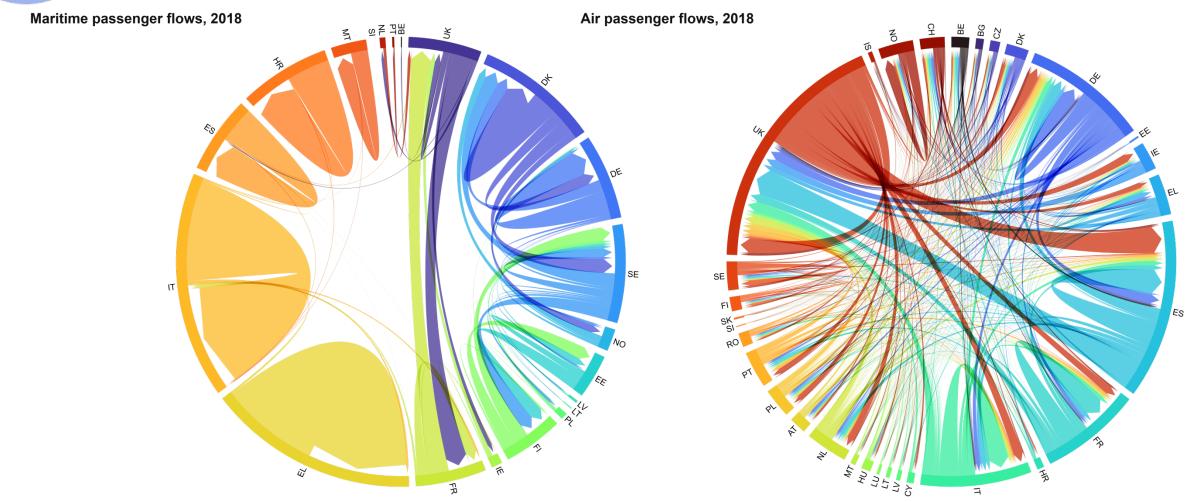
Intensity vs. Concentration

Intensity vs. Balance

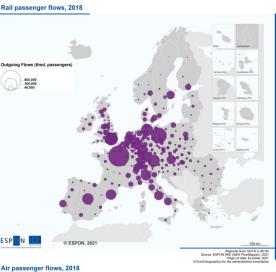

Results

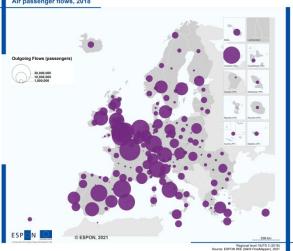

7. Interregional passenger transport flows by mode

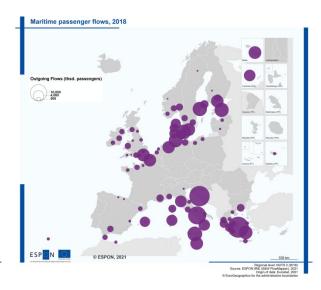
- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)


Results. Passenger transport flows by mode

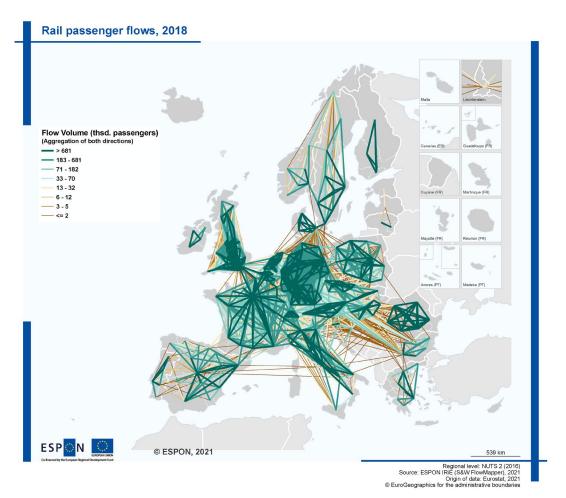
- Passenger transport flows by mode at the C2C level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - **Scope:** intra-national and inter-national flows
 - Modes: rail, maritime, air
 - Temporal scope: 2010 to 2018
 - Source: Processing of Eurostat data
- Data features:
 - 32 X 32 OD matrixes for each year
 - Unit: transport volume carried in tons

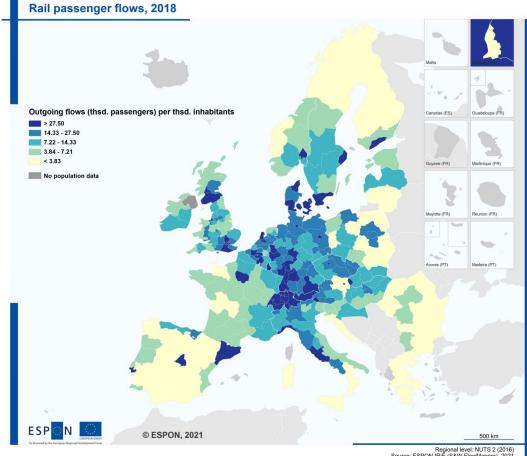

Results. Passenger transport flows by mode

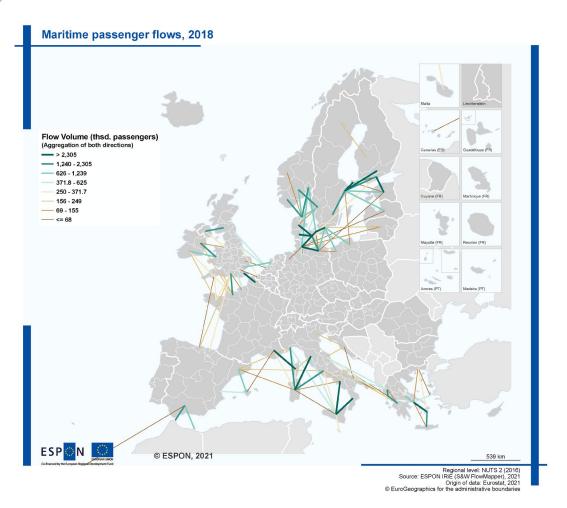


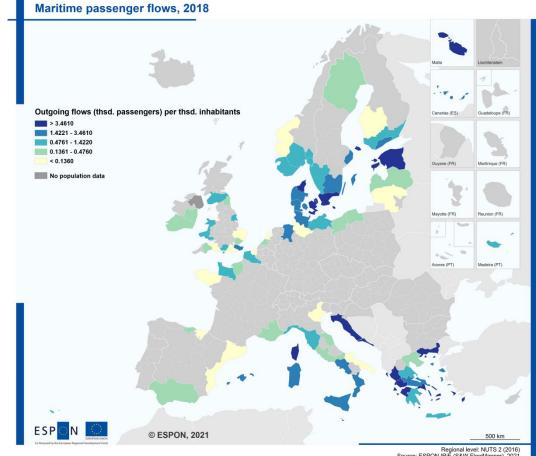

Results. Passenger transport flows by mode

Results at regional level (NUTS 2)

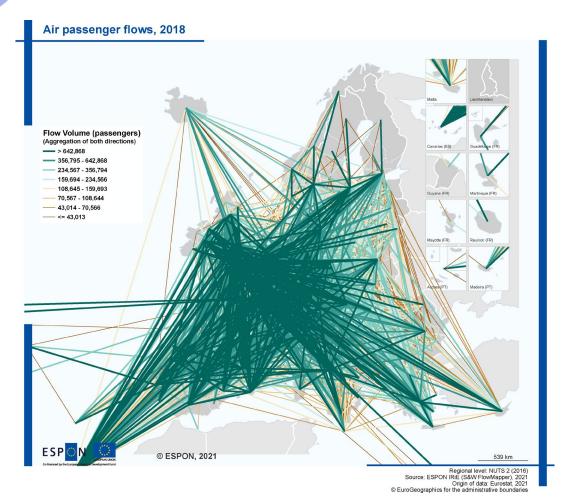

- Passenger transport flows by mode at the R2R level
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - **Scope:** intra-national and inter-national flows
 - Modes: rail, maritime, air
 - Temporal scope: 2010 to 2018
 - **Source:** Processing of Eurostat data
- Data features:
 - 329 X 329 OD matrixes for each year
 - Unit: transport volume carried in tons

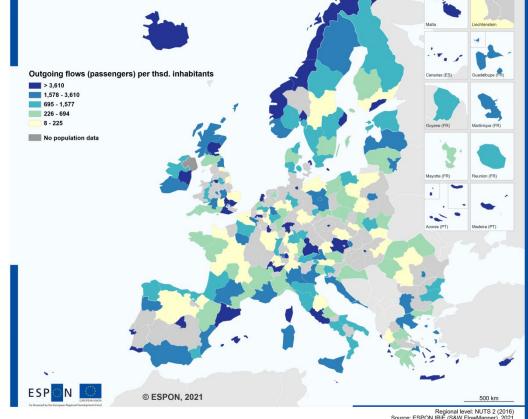



Results. Passenger transport flows by rail



Regional level: NUTS 2 (2016) Source: ESPON IRIE (5&W FlowMapper), 2021 Origin of data: Eurostat, 2021 © EuroGeographics for the administrative boundaries


Results. Maritime passenger transport flows



Regional level: NUTS 2 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: Eurostat, 2021 © EuroGeographics for the administrative boundaries

Results. Passenger transport flows by air

Air passenger flows, 2018

Regional level: NUTS 2 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: Eurostat, 2021 © EuroGeographics for the administrative boundaries

Results

8. Interregional Flows of Capital. FDI

- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)
- Analysis

- FDI country-to-country matrixes capital_fdi_c2c.xlsx
- Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
- Temporal scope: 2010 to 2018
- Source: AMADEUS
- Data features:
 - 32 X 32 OD matrixes for each year
 - Variable under consideration: shareholders' funds
 - Access to 2,887,867 firms 1,319,189 (45.68%) served for the estimation of C2C flows (only active firms); share varies significantly, from 0.005% (Denmark) to 86.4% (Greece)
 - Clean-up: firms with gaps in the data (financial over time or spatial); shareholders' funds with negative values
 - Sample narrowed to 8.5% of the initial list (Share varies significantly, from 0.005% (Denmark) to 86.4% (Greece))
 - Data extracted in euro prices

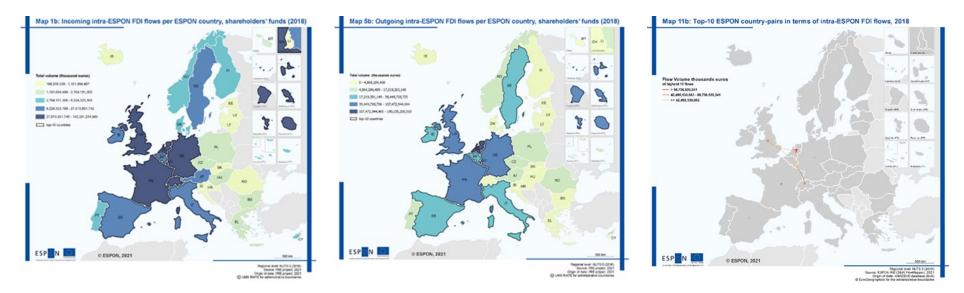
- FDI country-to-country matrixes capital_fdi_c2c.xlsx
- Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland + 3rd countries
- **Temporal scope:** 2010 to 2018
- Source: OECD
- Data features:
 - 77 X 77 OD matrixes for each year
 - Variable under consideration: FDI stocks
 - Data have extracted in euro prices for most of the countries. Data available in USD or other currencies have been converted to euros at the exchange rate provided by Eurostat

- FDI country-to-country matrixes capital_fdi_c2c.xlsx
- **Spatial extent:** EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland + 3rd countries
- Temporal scope: 2010 to 2018
- Source: IMF International Monetary Fund Data features
- Data features:
 - 77 X 77 OD matrixes for each year
 - Variable under consideration: stocks (or positions)
 - Data extracted in USD and converted to euro prices at the exchange rate provided by Eurostat

- FDI country-to-country matrixes capital_fdi_c2c.xlsx
- **Spatial extent:** EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland + 3rd countries
- Temporal scope: 2010 to 2018
- Source: EUROSTAT
- Data features:
 - 77 X 77 OD matrixes for each year
 - Variable under consideration: FDI positions
 - Data extracted in euro prices

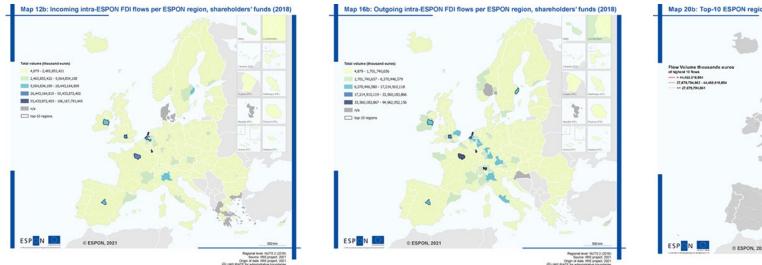
Results at regional level (NUTS 2 – 2016 classification)

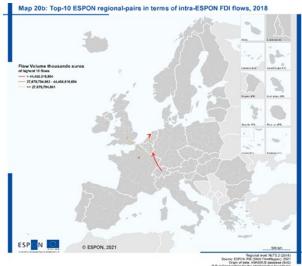
- FDI region to region matrixes capital_fdi_r2r.xlsx
- Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
- Temporal scope: 2010 to 2018
- Source: AMADEUS
- Data features:
 - 329 X 329 OD matrixes for each year
 - Variable under consideration: shareholders' funds
 - 246,665 firms (8.54% of initial amount) were used (only active firms)
 - Data extracted in euro prices


Cortar Copiar *		Calibri		* 11 * A* A*	and the second s			Gene		-		2		Normal 2	2	Κανον		Normal	Bue				× 🗊		uma * A Z		ρ
Copiar forr	mato	N <i>K</i>	<u>s</u> - E	- <u>A</u> -	= = =	3 3 2 3	Combinar y ce	ntrar - 🍄 -	- 96 000 🏂		nato Darfor		recto	Neutral		Cálcul	0	Celda de o	o Celo	la vincul	. Inse	star Eli	minar Formato	Borrar	Ord	lenary Bus trac= selecc	
papeles	5		Fuer	te G		Alineación		5	Número	5	onal · como				Esti	los						0	eldas		Medif		
		~	fx																								
с		D	E	F	G	н	1		к	L	м	N	0	Ρ	Q	R	s	т	U	v	w	x	Y	z	AA	AB	
Shareb	olders'	funds (t	housand e	uro), 2010																							
region	of origin of dectin	nation L	Order	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
	(below)		Coun	BE	86	BE	BE	BE	BE	BE	BE	86	38	BE	BE	BG	BG	BG	BG	BG	BG	BG	C2	CZ	CZ	CZ	-
Orde		Coun	O/D	8E10	8E21	BE22	BE23	BE24	BE25	BE31	8E32	8E33	8E34	BE35	BEZZ	8631	8632	BG33	8634	8641	BG42	8622	C201	C202	C203	C204	
1		BE	BE10	5.752.832.008,10	101.686.371		166.895		42.372.722	7.539.595	3.974.161 2.334.551	19.345.272	16.569	258.746	-							-	12.675.799			1.960	+
2		BE	8E21 8E22	61.989.270 1.390.488	2.126.289.188				929.277	4.382.735	2334.551	2.277.281		-								-					+
4		BE	BE23	31.631.756	25.842.536		150,519,646		2.558.659	533.443	222,320	6.302															+
5		BE	BE24	18.515.028	15,917,874	1.148.770		274,688,780	2.131.489	1.515.583	5.967.544	63 786															t
6		30	0025	4,146,521	5,257,056	7,212,228			424 224 262	95.325		366,132		254,360													t
7		BE	8631	9.067.122	306.055	89.047		11.010	780.050		7.927.327	4.555.123		7.971.805													1
8		BE	BE32	27.729.780	7.264.543			18.450.772	181.835	4.045.669	33.829.694	1.750.715		\$45.752													
9		BE	BE33	14.840.625	128.011	558.317	175.210	12.535.833	351.376	4.066	264.107	43.628.646															
10		30	0034	1.675.119	338.216		37.885	123.310			3.175.938		1.752.148														
11		BE	8835	2.298.319	450.363	35.485	6.504.277	9.873		23,280,314	7.868	1.160.858		4 199 961													1
12		30	BEZZ																								ــــ
13		BG BG	8G31 8G32	293	23,418			3.555	83.957							570.082	2 346 604	4.189		166.548 3.057	20.376					551	
14		8G	8G32 8G33	295	23.418			3.555	35.957	988.433						8.135		183.475	1.132.709	3.057	50,856	-	2.375.655				+
15		8G	8634		33.133				158,004	500.400						51.563	107.002	139.036	5.105.695	50.011	135,231		69.201				+
17		BG	8641	19,704,353	2,431,395	344.246	463.039	247.546	1.634.816								1 021 441		3.355.531		223,739		25.268.267	5,230		16.484	+
18		BG	8G42	884.397	31,310		162,505		87.241							-		1.282.995	39.014		11.769.812			15.107		_	t
19		BG	BGZZ																								
20		CZ	C201	7.544.379	2.652.357	57.954	742.716	1.481.781	43.498											206.597			874.723.299	1.286.807	98.030	6.926	,
21		cz	C202	546.162	11.662.995			711.611	203.220	457.853													2.928.675	7.579.545			
22		cz	CZ03	132.463	227.414	6.074.567	3.985		20.837.094	3.424.736		_											5.665.580		8.219.597		
23		cz	C204	412.576 328.065	900.869	1.119.622		5.500.412 58.654	104.034	30.684.170		573.372				97.829					1.663.038	-	73.596.845	5.525.252		15.966.781	
24		CZ CZ	C205 C205	328.065	1.104.091 828.813	302.967	1.426.621 894.991		53.933 9.876.549	1 589 593	150.858			9.105	-							-	7.738.356	978.545	1.425.220	718,739	3
25		cz	C206		628,813	451.880		1.018.019	297,999	1.999.993	190.858			9.105			3 2 2 9					-	4.519.952		4.953.742	/18./39	+
27		CZ	C208		5.042	-91.680	181.805		3.419.725								3.449						5.353.671				+
28		cz	CZZZ																-						_		1
29		DK	DK01																								
30		DK	DK02																								
31		DK	DK03																								
52		DK	DK04																								
33		DK	DK05																								1
34		DK	DKZZ																								+
35		DE	DE11	2.082.940 20.758.152	642.540			9.299	1 586 502	2.604.282		63.344		89.957	1			26.806				-	224.968		29.094		+
36		DE	DE12 DE13	zu.758.152	72.706	1.185	483.739	3.376.571	117.420	127.616		63.344											z24.968	61.323		25.913	+

Analysis of the results:

- Comparative analysis of the years 2010 and 2018
- Flows at country level and at regional level:
 - Country level
 - Total number, numbers per country; level and change; incoming and outgoing FDI
 - Per capita number, per capita numbers per country; level and change; incoming and outgoing FDI
 - Top-10 country-pairs with the highest flows
 - Regional level
 - Total number, numbers per region; level and change; incoming and outgoing FDI
 - Per capita number, per capita numbers per region; level and change; incoming and outgoing FDI
 - Top-10 region-pairs with the highest flows


Country level.


- NL, UK, LU, FR, DE, ES, IT, CH, and BE are the countries that present, consistently, the highest levels of incoming FDI flows.
 NL, UK, FR, DE, BE, ES, LU, IT, SE, and IE are the countries that present, consistently, the highest levels of outgoing FDI flows.
- NL-NL, UK-UK, FR-FR, DE-DE, LU-LU, NL-LU, NL-UK, and ES-ES are the pairs of countries that present, consistently, the highest levels of FDI flows.

Regional level.

- LU00, NL32, FR10, NL33, UKJ1, IE06, UKI3, ES30, NL31, NL41, ITC4, and BE10 are the regions that present, consistently, the highest levels of incoming FDI flows. LU00, NL32, FR10, UKI3, NL33, ES30, SE11, and BE10 are the regions that present, consistently, the highest levels of outgoing FDI flows.
- NL32-NL32, FR10-FR10, UKJ1-UKJ1, LU00-LU00, UKI3-UKI3, NL33-NL33, and LU00-NL32 are the pairs of regions that present, consistently, the highest levels of FDI flows.

Results

9. Interregional Flows of Capital. Remittances

- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)
- Analysis

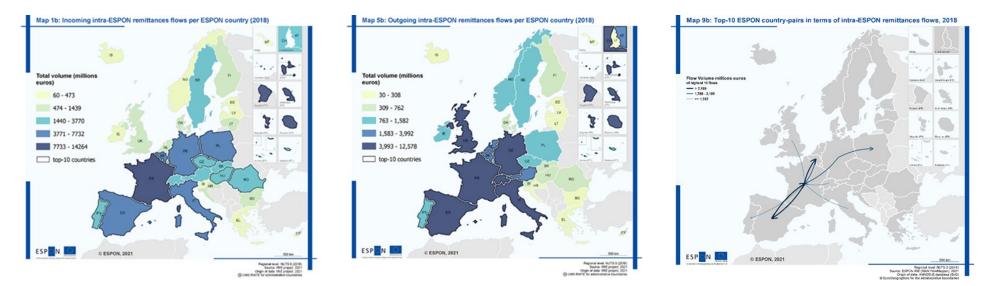
- Remittance country-to-country matrixes capital_rents_remittance_c2c.xlsx
- **Spatial extent:** EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland + 3rd countries
- **Temporal scope:** 2010 to 2018
- Source: World Bank
- Data features:
 - 77 X 77 OD matrixes for each year from 2010 to 2018
 - Data extracted in USD and converted to euro prices

<u>ہ ہ</u>	_								capit		ince_c2c.xlsx - E											0
ivo Inicio		Diseño de página	Fórmulas I	Datos Revi	sar Vista	♀ ¿Qué des	ea hacer?														R	Co
🔏 Cortar		alibri - 11 -	A* A* = =	=	🐺 Ajustar t	erto	Número			- IV N	ormal	Bueno	Incorr	recto Ne	sutral	Cálculo		- 🖹			<u>₽</u> ₩ 🖌	С
Copiar Copiar		1 K S - 1 - 0	· A · = =		Combin	ar y centrar 👻	<u>∽</u> ~ % ∝	0 38 48	Formato D	ar formato	elda de co	Celda vincu	I Entrad	da <u>Hi</u>	pervínculo	Hipervínculo		tar Eliminar Fo	rmato	0	rdenar y Buse	
ortapapele		Fuente			ineación				condicional * co	omo tabla -			Estilos					* Celdas	- C BOI		filtrar≠ selecci lificar	ioi
÷	×	√ Jx																				
В	с	D	E	F	G	н	1.1	J	K	L.	м	N	0	P	Q	R	S	т	U	V	W	
	Rilatoral Ro	mittance Estimates usi	og Migrant Str	vkr. Hort Co	untru Incomor	and Origin	Country Inco	mor (million	ouro) 2010													
	bilateral ive	sinicance estimates usi	ing iningrame see	Juns, Host Co	undyincome	s, and origin	country inco	mes (minior	rearon, 2010													
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Γ
		Remittance-sending																				
		country (across)																				
		- Remittance-																				
		receiving country																				L
	Order	(down)	BE	BG	cz	DK	DE	EE	IE	EL	ES	FR	HR	п	CY	LV	LT	LU	HU	MT	NL	
	1	BE			12,96	18,65	611,50		31,83	14,54	912,36	2344,85		128,46	3,91		0,28	312,99	19,38		822,04	ľ
	2	BG	2,79		4,00	1,24	67,32		1,21			14,66		38,23	4,75		0,01	0,19	1,36		6,96	
	3	CZ	13,36			3,11	233,37		32,97			35,11		29,96	2,49		0,15	1,35	2,20		15,53	
	4	DK	13,82		0,48	91,74	103,74		4,13		47,97	21,77	26,46	9,91 143,66	0,52		0,19	6,55 44,09	1,24	1,32	11,33 325,37	ł
	6	EE	244,50		20,01	1,61	9,13		47,42			470,28	20,40	1,39	0,04		2,75	0,05	0,09	1,52	2,65	ł
	7	IE	2,70		0,05	1.02	10.84		3,13	0,83		4.04		2.37	0,46		0,00	0,54	0,03		2,03	
	8	EL	14,25		1,65	1,17	442,45		0,65		4,03	12,60		8,48	19,27		0,01	1,02	1,40		7,93	ŀ
	9	ES	220,13		0,98	23,62	990,52		52,82			2107,20		129,20	0,78		0,08	15,42	3,43		106,25	Γ
	10	FR	1284,88		26,63	41,26	1248,97		99,08				3,60		5,88		0,87	171,93	25,14	0,93	149,82	Ļ
	11	HR	0,06		2,09	1,11	464,89		1,60			41,67		35,07	0,10		0,00	0,48	1,07		0,21	ł
	12	IT CY	191,62		1,51	7,14	1243,76 1,02		12,43			658,30 0,78	2,87	0,16	0,62		0,03	22,51	4,13	1,03	27,23	
	15	LV	3,59		0,04	3,52	23,74	5.05				2,20		2,42	0.25		8,46	0,01	0,15		5,30	
	15	LT	6,44		0,49	13,42	54,25	4,30				4,20		5,73	0.25			0.09	0.15		12.11	t
	16	LU	267,40		0,32	1,94	334,36		3,48			241,21		8,68	0,23		0,11		1,65		20,07	ſ
	17	HU	25,93		21,02	8,45	317,33		17,16			42,09		24,67	1,05		0,24	1,31			22,54	
	18	MT	0,04		0,00	0,02	0,14		0,11			0,23		0,26	0,01		0,00	0,01	0,00		0,07	ł
	19	AT	189,78 15.86		0,82	10,04	303,60 1053.81		9,34			66,50 52,08	6,79	15,76	0,63		0,03	6,04 2,91	2,78		24.41	┝
	20	PL	15,80		43,29	43,70	1123,98		3,43		40,09	221.26	0,75	210.39	1,17		4,10	2,91	24,99		24,41	t
	22	PT	32,62		0,05	1.37	224,87		2,72			929,26		7,61	0,07		0,00	64,19	0,22		15,92	
	23	RO	23,91		12,53	4,68	149,02		13,80			59,19		875,78	5,12		0,02	0,80	192,06		9,72	
	24	SI	0,04		0,45	0,37	59,61		0,35			19,17	43,75		0,03		0,00	0,19	0,17		0,06	
	25	SK	2,91		651,86	1,54	93,02		28,61			12,25		22,69	0,28		0,02	0,28	6,55		4,80	
	26	FI	7,12		0,64	8,08	41,32	1,92				7,71		4,30	0,84		0,08	1,69	1,47		4,66	
	27	SE UK	8,61 30,64		0,34	26,76 17,53	44,20 185,57		4,31 471,32			15,96 204,95	0,49	20,61	1,30	1,44	0,05	1,98	1,86	6,08	6,27	
	20	IS	0.10		0.01	4,19	0,96		4/1,52			204,95		40,78	0,01		0,18	4,72	4,50	0,00	0,18	
			2011 2012	2012				Anne>		-,	6/65						-,				-/	H

- Remittance country-to-country matrixes capital_rents_remittance_c2c.xlsx
- **Spatial extent:** EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland + 3rd countries
- **Temporal scope:** 2010 to 2018
- Source: EUROSTAT
- Data features:
 - 77 X 77 OD matrixes for each year from 2010 to 2018
 - Data extracted in euro prices

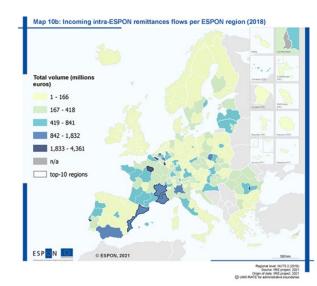
• • ∂	_																					
vo Inicio	Insertar	Diseño de página	Fórmulas I	Datos Rev	isar Vista	♀ ¿Qué de	iea hacer?														<u>ନ</u>	Compa
🔏 Cortar		libri • 11 •	A* A* = =		📴 Ajustar	texto	Número			No No	rmal	Bueno	Incorre	cto Ne	utral	Cálculo		- 🖹		itosuma	Aw (С
Copiar		K S					· · · · ·	6.0.00		-	da de co	Celda vincu	Entrada		pervínculo	Hipervincul		rtar Eliminar Fi		llenar *	denary Busc	rary
👎 Copiar	formato	n v s . m . <mark>∞</mark> .	· <u>w</u> ·		= E comoin	ary centrar *			ondicional * con				entroot			The second second		-	- 🧶 Bo	erar *	iltrar * selecci	ionar
Portapapeles	6	Fuente	G	A	lineación	6	Número	- G					Estilos					Celdas		Moc	ificar	
	1 ×	√ fx																				
в	с	D	E	F	G	н	1.1	J	к	ι	м	N	0	Р	Q	R	s	т	U	v	w	
	Bilateral Re	mittance Estimates usin	ng Migrant Sto	ocks, Host Co	ountry Income	s, and Origin	Country Incon	nes (million	euro), 2010													
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	_
		Remittance-sending		4	2	-	2	0	/	0	9	10		16	12	14	15	10	17	10	19	-
		country (across)																				
		-																				
		Remittance-																				
		receiving country																				
	Order	(down)	BE	BG	cz	DK	DE	EE	IE	EL	ES	FR	HR	IT	CY	LV	LT	LU	HU	MT	NL	
	1	BE			12,96	18,65	611,50		31,83	14,54	912,36	2344,85		128,46	3,91		0,28	312,99	19,38		822,04	-
	2	BG	2,79		4,00	1,24	67,32		1,21	46,31	151,65	14,66		38,23	4,75		0,01	0,19	1,36		6,96	-
	3	CZ	13,36			3,11			32,97	5,64	40,28	35,11		29,96	2,49		0,15	1,35	2,20		15,53	-
	4	DK	13,82		0,48		103,74		4,13	5,66	47,97	21,77		9,91	0,52	2,30		6,55	1,24		11,33	1
	5	DE	244,96 1.86		26,81	91,74	9.13		47,42	34,52	750,49	470,28	26,46	143,66	6,31	3,76	2,79	44,09	72,59	1,32	325,37	H
	7	IE	2,70		0,09	1,61			5,15	0,19	1,88	4.04		2,37	0,04	4,85	0,96	0,05	0,09		2,65	
	8	EL	14.25		1.65	1,02	442,45		0.65	0,65	4,03	12.60		8,48	19.27		0,01	1.02	1.40		7,93	F
	9	ES	220.13		0,98	23.62	990.52		52,82	1.12	4,05	2107.20		129,20	0,78		0,02	15,42	3,43		106.25	
	10	FR	1284,88		26,63	41.26	1248,97		99,08	13,58	1832,72		3,60	290,58	5,88		0,87	171.93	25,14	0,93	149,82	
	11	HR	0,06		2,09	1,11	464,89		1,60	0,53	2,53	41,67		35,07	0,10		0,00	0,48	1,07		0,21	Ē
	12	IT	191,62		1,51	7,14	1243,76		12,43	9,58	135,38	658,30	2,87		0,62		0,03	22,51	4,13	1,03	27,23	Ē
	13	CY	0,18		0,04	0,10	1,02		0,26	13,93	0,24	0,78		0,16			0,00	0,01	0,13		0,24	
	14	LV	3,59		0,22	3,52	23,74	5,05	35,79	0,11	4,79	2,20		2,42	0,25		8,46	0,03	0,09		5,30	-
	15	LT	6,44		0,49	13,42	54,25	4,30	111,31	0,79	69,00	4,20		5,73	0,25	30,30		0,09	0,15		12,11	-
	16	LU	267,40		0,32	1,94	334,36		3,48	4,37	35,37	241,21		8,68	0,23		0,11		1,65		20,07	-
	17	HU MT	25,93		21,02	8,45	317,33		17,16	0,74	27,71	42,09		24,67	1,05		0,24	1,31			22,54	1
	18	MT	0,04		0,00	0,02	0,14		0,11	0,08	0,07	0,23		0,26	0,01		0,00	0,01	0,00		0,07	-
	19	AT	189,78		0,82	10,04			9,34	6,68 9,47	85,90 40.09	66,50 52,08	6.79	15,76	0,63		0,03	6,04 2.91	2,78		24.41	-
	20	PL	15,80		43,29	43,70	1123,98		3,43	9,47	155,55	221,26	0,79	210,39	1,17	1.32		2,91	5,99		24,41	É
	22	PT	32.62		43,23	1,37	224.87		2,72	0,31	188,03	929.26		7,61	0.07	1,52	0.00	64,19	0.22		15,92	-
	23	RO	23.91		12.53	4.68	149.02		13.80	47.69	870.16	59.19		875.78	5.12		0.02	0.80	192.06		9,72	
	24	SI	0,04		0,45	0,37	59,61		0,35	0,17	1,97	19,17	43,75	7,04	0,03		0,00	0,19	0,17		0,06	Ē
	25	SK	2,91		651,86	1,54	93,02		28,61	1,46	19,29	12,25		22,69	0,28		0,02	0,28	6,55		4,80	<u> </u>
	26	FI	7,12		0,64	8,08	41,32	1,92	2,62	2,45	25,41	7,71		4,30	0,84	1,13	0,08	1,69	1,47		4,66	Г
	27	SE	8,61		0,34	26,76			4,31	5,60	39,34	15,96	0,49	20,61	1,30	1,44	0,05	1,98	1,86		6,27	
	28	UK	30,64		1,73	17,53	185,57		471,32	16,73	487,46	204,95		40,78	38,12	0,99	0,18	4,72	4,38	6,08	55,32	1
	29	IS	0,10		0,01	4,19	0,96		0,05	0,01	0,59	0,16		0,08	0,01		0,00	0,17	0,03		0,18	-

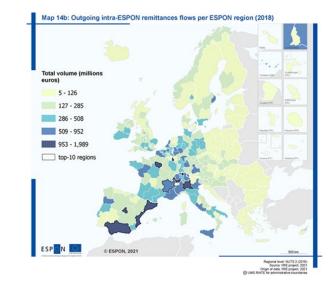
Results at regional level (NUTS 2 – 2016 classification)

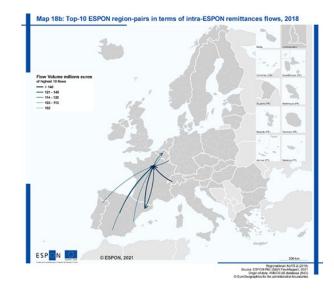

- Remittance country-to-country matrixes capital_rents_remittance_r2r.xlsx
- Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
- Temporal scope: 2010 to 2017
- Source: World Bank
- Data features:
 - 329 X 329 OD matrixes for each year from 2010 to 2017
 - National-level data were "regionalized"

÷-∂	_																					
ivo Inicio					isar Vista		ea hacer?														Я	Cor
🔏 Cortar		alibri v 11 v	A* A* = =	= **	📑 Ajustar t	exto	Número	*		- N	Iormal	Bueno	Incor	recto N	eutral	Cálculo		- 🏊		osuma *	∮γ \$	D
Copiar		IK S - ⊡ - Ŏ	· A · = =		E Combin	arv centrar ×	C + 96 00	0 52 52		ar formato	elda de co	Celda vincu	I Entra	da Hi	pervínculo	Hipervínculo		rtar Eliminar Fo	rmato	0	rdenary Bus	car
👎 Copiar	ronnato								condicional * co	mo tabla *								· •	- 🖉 Bor		filtrar * selecc	tion
ortapapeles	s 6	Fuente	6	A	lineación	5	Númei	ro ra					Estilos					Celdas		Mo	dificar	
*	: ×	√ fx																				
R	c	D	E	F	G	н			к	L	м	N	0	P	Q	R	s	т	U	v	w	
																						f
	Bilateral Re	mittance Estimates usi	ing Migrant Sto	ocks, Host Co	untry Incomes	, and Origin	Country Inco	mes (millior	euro), 2010													
																						Г
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Γ
		Remittance-sending																				L
		country (across)																				L
		- Remittance-																				
		receiving country																				L
	Order	(down)	BE	BG	cz	DK	DE	EE	IE	EL	ES	FR	HR	п	СҮ	LV	LT	LU	HU	MT	NL	
	1	BE			12,96	18,65	611,50		31,83			2344,85		128,46	3,91		0,28	312,99	19,38		822,04	
	2	BG	2,79		4,00	1,24	67,32		1,21			14,66		38,23	4,75		0,01	0,19	1,36		6,96	
	3	CZ	13,36			3,11	233,37		32,97			35,11		29,96	2,45		0,15	1,35	2,20		15,53	
	4	DK	13,82		0,48	91,74	103,74		4,13			21,77	26.4	9,91 6 143,66	0,52		0,19	6,55	1,24	1,32	11,33 325,37	
	6	EE	1.86		0.09	1.61	9.13		5.15			1.14	20/4	1.39			0.96	0.05	0.09	4,52	2.65	
	7	IE	2,70		0,05	1,02	10,84		0/20	0,83		4,04		2,37	0,46		0,01	0,54	0,23		2,93	
	8	EL	14,25		1,65	1,17	442,45		0,65		4,03	12,60		8,48	19,27	7	0,01	1,02	1,40		7,93	T
	9	ES	220,13		0,98	23,62	990,52		52,82			2107,20		129,20	0,78		0,08	15,42	3,43		106,25	
	10	FR	1284,88		26,63	41,26	1248,97		99,08				3,6		5,88		0,87	171,93	25,14	0,93		
	11	HR	0,06		2,09	1,11	464,89		1,60			41,67	2.8	35,07	0,10		0,00	0,48	1,07	1.03	0,21	
	12	CY	0.18		0.04	7,14	1,02		0.26			058,30	2,8	0.16		4	0,03	22,51	4,13	1,03	27,23	
	15	LV	3,59		0,04	3,52	23,74	5.05				2.20		2,42		5	8,46	0,01	0,15		5,30	
	15	LT	6,44		0,49	13,42	54,25	4,3				4,20		5,73	0,25		-,**	0,09	0,15		12,11	
	16	LU	267,40		0,32	1,94	334,36		3,48	4,37		241,21		8,68	0,23	3	0,11		1,65		20,07	
	17	HU	25,93		21,02	8,45	317,33		17,16			42,09		24,67	1,05		0,24	1,31			22,54	
	18	MT	0,04		0,00	0,02	0,14		0,11			0,23		0,26	0,01		0,00	0,01	0,00		0,07	+
	19 20	AT	189,78 15,86		0,82	10,04	303,60 1053.81		9,34			66,50 52.08	6.7	15,76	0,63		0,03	6,04 2,91	2,78		24.41	ł
	20	PL	15,86		27,92	6,15	1053,81		3,43			52,08	6,7	9 32,28 210,39	1,17		0,10	2,91	24,99		24,41	
	22	PT	32,62		0,05	1.37	224,87		2,72			929,26		7,61	0,07		0,00	64,19	0,22		15,92	
	23	RO	23,91		12,53	4,68	149,02		13,80			59,19		875,78	5,12		0,02	0,80	192,06		9,72	
	24	SI	0,04		0,45	0,37	59,61		0,35			19,17	43,7		0,03		0,00	0,19	0,17		0,06	
	25	SK	2,91		651,86	1,54	93,02		28,61			12,25		22,69	0,28		0,02	0,28	6,55		4,80	
	26	FI	7,12		0,64	8,08	41,32	1,93				7,71		4,30	0,84		0,08	1,69	1,47		4,66	
	27	SE	8,61		0,34	26,76 17,53	44,20 185,57		4,31 471,32			15,96	0,4	9 20,61 40,78	1,30		0,05	1,98	1,86	6.00	6,27	
	28	UK	30,64		1,73	4,19	185,57		4/1,32			204,95		40,78			0,18	4,72	4,38	6,08	55,32 0,18	
•				0.0040	2014 2015			Anne>		3,01	0,00	0,10		1 3,08	3,01	I	0,00	0,17	0,05		3,10	+

Analysis of the results:


- Comparative analysis of the years 2010 and 2017; the report will be updated when data for year 2018 become available
- Flows at country level and at regional level:
 - Country level
 - Total number, numbers per country; level and change; incoming and outgoing remittances
 - Per capita number, per capita numbers per country; level and change; incoming and outgoing remittances
 - Top-10 country-pairs with the highest flows
 - Regional level
 - Total number, numbers per region; level and change; incoming and outgoing remittances
 - Per capita number, per capita numbers per region; level and change; incoming and outgoing remittances
 - Top-10 region-pairs with the highest flows


- Country level.
- FR, DE, BE, ES, IT, PL, RO, and PT are the countries that present, consistently, the highest levels of incoming remittances flows.
 DE, FR, UK, ES, IT, CH, BE, NL, AT, and PT are the countries that present, consistently, the highest levels of outgoing remittances flows.
- FR-BE, ES-FR, FR-ES, BE-FR, DE-FR, and DE-PL are the pairs of countries that present, consistently, the highest levels of remittances flows.

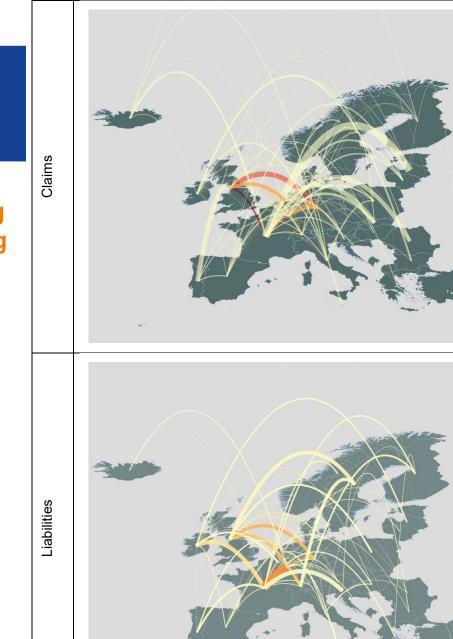


Regional level.

- FR10, BE10, LU00, FRK2, ES52, ES51, BE32, PT17, and R032 are the regions that present, consistently, the highest levels of incoming remittances flows. CH01, FR10, ES51, ES30, CH04, LU00, ES52, and FRK2 are the regions that present, consistently, the highest levels of outgoing remittances flows.
- CH01-FR10, ES51-FR10, ES30-FR10, FR10-ES51, FR10-BE10, PT11-FR10, and ES52-FR10 are the pairs of regions that present, consistently, the highest levels of remittances flows.

Results

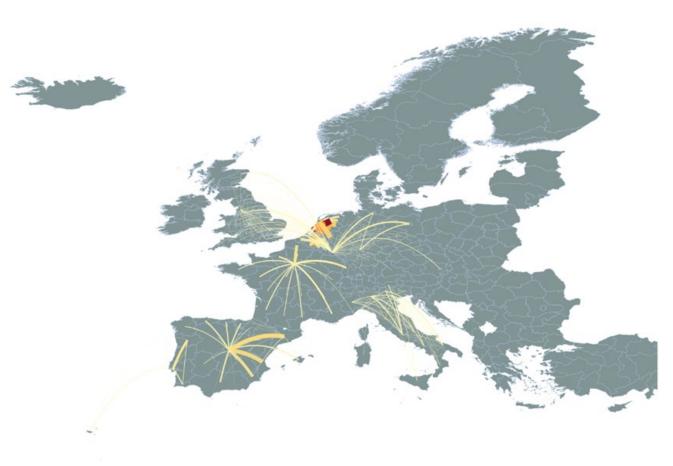
10. Interregional flows of capital: loans

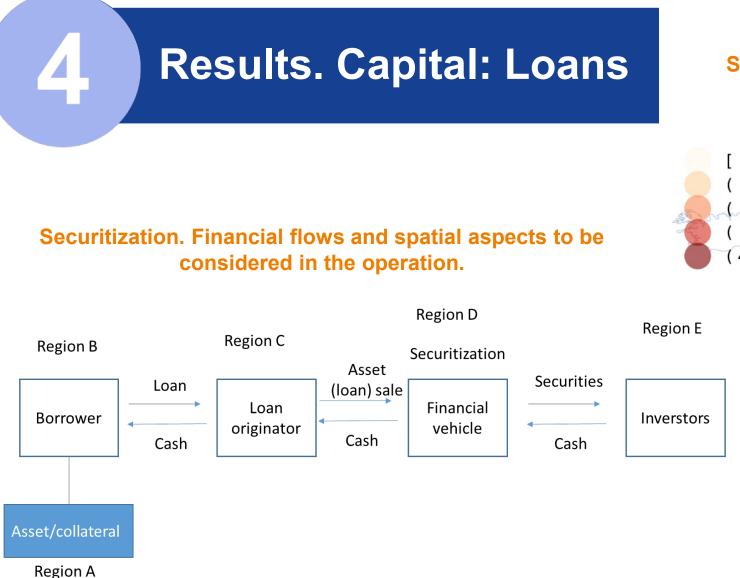

- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)
- Typologies
- Analysis

Results. Capital: Loans

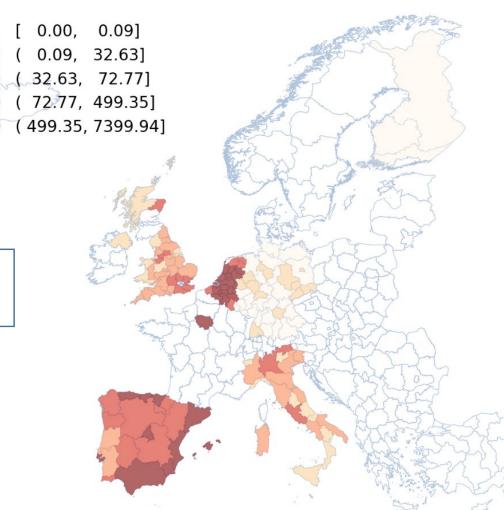
"Exploratory analysis"

Cross-border banking positions by reporting country. BIS. 2019Q4

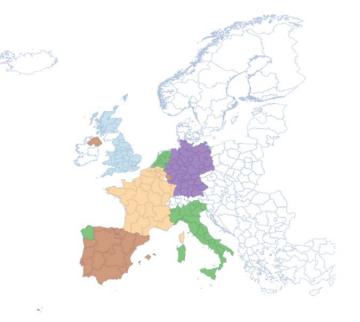

- Loans at the C2C level
- BIS (claims & liabilities)
 - Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
 - Temporal scope: 2010 to 2018
 - Source: BIS/LBS.
- EDW/ECB (flows by ABS type)
 - Spatial extent:
 - **Temporal scope:** 2010 to 2018
 - Source: EDW(ECB).



Results. Capital: Loans


- Results at R2R level (NUTS 2)
 - EDW/ECB (flows by ABS type)
 - **Spatial extent:** no pan-European coverage
 - Temporal scope: 2010 to 2018
 - Source: EDW(ECB).

Region-to-Region financial flows in the EDW database. Current Loan values (mean, all dates).



Spatial distribution of RMB loans: Mortgages. Current valued in 2018Q1 Euro Millions.

Cluster analysis: mortgage loans.

Loan demand drivers. Summary of panel data estimations

Results. Capital: Loans

Econometric analysis: the regional demand for ABS loans. Panel Data regressions2019. EDW/ECB

Variables	Description
Density _{it}	Population density by NUTS 2 region (Persons per Km2). Eurostat
Age _{it}	Median age of regional population [MEDAGEPOP]. Eurostat
GDP _{it}	Regional GDP. ESPON Database.
Unemployment	Unemployment rate by NUTS2 regions. Eurostat
rate _{it} .	Real Wage. Own calculations based on Eurostat data:
Wage (real) _{it}	Compensation of employees by NUTS 2 regions, and Employment
	by region. Wage is divided by country Purchasing power parities (PPPs) from Eurostat.
BUSINESS _i	
	index by regions composed by Employment, GVA and in the
	"Financial and insurance activities;; " sectors (K-N) as % of total
RCI	figure Only data for 2019 year.
KOIj	Regional competitiveness index by NUTS2 European Commission 2019. Only data for 2019 year
Housing Prices _{ct}	Residential property prices - Real - Index, 2010 = 100. BIS (Bank for
	international Settlements). Only country data.
NPL _{ct}	Bank nonperforming loans to total gross loans (%). Country level
	data World Development Indicators. World Bank

	Model 1				Model 2			
	Panel OLS		Random Effects		Panel OLS		Random Effects	
С	14.68	**	7.6793	**	10.22	**	5.4612	**
	(11.3000)		(3.0776)		(7.3605)		(2.9784)	
Real Wage	-0.0388	**	0.0061		0.0041		0.0205	**
	(-2.1603)		(0.2940)		(0.2648)		(1.0531)	
Pop- density	-0.0002	**	-0.0001	**	-0.0001		0.0002	
	(-2.1440)		(-0.7672)		(-1.2215)		(0.7687)	
GDP	0.00000518	**	0.00000593	**				
	(5.2148)		(5.9492)					
Unemploy.					0.095	**	0.0091	
					(5.2781)		(0.5962)	
Age	-0.0444	**	-0.0074		-0.0128		0.0354	
	(-1.9213)		(-0.1394)		(-0.5041)		-1.0314	
Business	0.3619		0.1485		0.1822		0.2799	
	(1.8461)		(0.7344)		(1.0065)		(1.0620)	
RCI 2019	0.614	**	-0.4591		1.7628	**	-0.5875	
	(2.4685)		(-1.5262)		(7.0110)		(-1.3702)	
Housing prices	-0.0437	**	-0.0005	**	-0.0338	**	0.0022	**
	(-9.4859)		(-0.1649)		(-6.4546)		(0.5405)	
NPL	0.0125		0.0101		0.0809	**	-0.0026	
	(0.6349)		(1.3605)		(5.3296)		(-0.3597)	
								_
R-squared	0.4869		0.2116		0.4789		0.2439	
R-Squared (Within)	-0.9056		0.116		-1.8296		0.1933	
R-Squared (Between)	0.5428		0.2001		0.5707		0.0238	
R-Squared (Overall)	0.4506		0.2168		0.3911		0.0359	
F-statistic	161.55		45.794		196.99		69.329	
P-value (F-stat)	0		0		0		0	
Cov. Est.	Clustered		Clustered		Clustered		Clustered	
No. Observations	425		425		541		541	
Haussman Test	p-Value: 7.11	3733	3722910155e-41		p-Value: 1.9	7189	46150066573e-69	

Results

11. Interregional Flows of Knowledge. Erasmus

- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)
- Analysis

- Erasmus country-to-country matrixes knowledge_erasmus_c2c.xlsx
- Spatial extent: EU27 + UK, Norway, Lichtenstein, Iceland and Switzerland + Rest of the world (ROW) + Turkey (from 2012 on) + Macedonia (from 2014 on)
- **Temporal scope:** 2010 to 2014
- Source: EU Open Data Portal Erasmus mobility statistics
- Data features:
 - Erasmus student exchange
 - 33 x 33 OD matrixes for 2010 and 2011
 - 34 x 34 OD matrix for 2012 and 2013
 - 35 x 35 OD matrix for 2014

👗 Cortai P <u>D</u> Copia 📌 Copia	· •	Call	bri K S = [Njustar tert Combinar j		Genera		- % 43	Formato	Derfo	ernato N	omma 2 Iormal		omma 9 ueno		ormal 10 correcto	Neu		Norm			sertar Bis	niner form	uto 🔍	Autosuma Relienar * Bomar *	Z T Orden	ary Bu	
rtapapele		6	Fue	nte	-			Almesción			6	Número	6	condiciona	l • como	tabla - 🗀				Estilos								eldas		Porta -	Modifica	r∗'selec ir	X90
			/ Ja																														
	c		E	F	G								0	P				т			I	x		z						AE	AG	AH	
8	c	D	E		a	н	1	1	×	L	м	N	0	p	Q	R	S	1	U	v	W	x	Y	Z	AA	AB	AC	AD	AE	AP.	AG	AH	-
			1	2	3	4	5	6	7	8	2	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
	Order		BE	BG	CZ	DK	DE	EE	IE	EL	ES	FR	HR	п	CY	LV	LT	LU	HU	MT	NL		PL	PT	RO	SI	SK	FI	SE	UK	15	u	
	2	BE	68	17	115		505 265	28	171	35 26	1288	877	18		32	7	41	3	115	21	339	151	115	268	34	51	27		272		9	3	-
	3	CZ	227	30		10		89	91	26	129	128	35		36		12	1	37		260	307	107	379	11	13	71		28		20		-
	4	DK	60	00	41		413	4	88	13	279	315		200	17	4	121		29	15		85	25	65	13	1/0		19	235		20		H
	5	DE	455	31			410	256		146		4894			49	180	139	51		54		547		718	36	120	60		2538		129	3	
	6	EE	24	12					4	15	70	50	2		5	16	6		17	1	37	27		64	1	9	3	81	39		6	-	
	7	IE	72	11	49		294			3	598	667		69	4		3		26	27		58	20	14		10		53	96		4	1	Γ
	8	EL	138	6				11			388	583	7	269	40		25		62	4		81	151	184	31	18	21		87		2		-
	9	ES FR	1527	88				62		213	4619	3636	77		34		256	9	380	13		520 416		2183	277	232	224		881		38	4	-
	10	HR	597	59			3336	103	1482	211	4639	67	73	1771	48		240	17	559	55		436		412	521	138	113		1604		56	2	-
	12	IT	933	23				100	299	148	6759	3240	34		25			15		104		421		1290	210	57	76		537		31		-
	13	CY	27		4	3	1.54	100	4	95	32	16		18			5	- 13	101		11	10	13	15		24			12			-	H
	14	LV	52	31	57	61	160	44	2	34	134	99	7		21		193	2	29	9		83		84	11	23	25	81	49		8	5	
	15	LT	80	27		84	177	31	8	61	240	143	35	165	45	83		4	67	8	80	47	100	236	11	53	28	156	101	48	6	_	
	16	LU	28				181				12	115		7	1	1			6		4	9		20				4				1	
	17	HU	151	15	67			24		53	269	247	15		15	12	31	3			202	214		159	40	29	14	178	36		4	4	
	18	MT	245	11	9	10	12	23	15		1101	656		52 348	13	26	37		222		3	202	7	205	12	21	10	322	2		22		-
	20	AT	245	11	109			23		43	657	500			15				222	22	255	202	44	1205	12	21	10		641		39		-
	21	PL	350	156				61		220	1859	1002			76		80		281	33		280		1181	75	178	285		213		31		H
	22	PT	210	43				28		57	1097	323			5	28	127	6	184		235	99			174	126	68		98		1	-	F
	23	RO	159	27	83	63		6	14	115	510	971	15	424	4	13	17		288	2	75	100		247		7	23	57	36	76	5	3	
	24	SI	46	3	93		219	3	18	5	142	70	81		9	2	11		15	5	62	105	44	172			9	43	31		9		
	25	SK	78	22	445		336	80		89	239	205			2	25	51	1	61	2	49	118		159	11	59		98	42		10		
	26	FI	172	3	175			57	128	30	469	445			21	7	5		127	21		293	50	127	3	44	20	17	145	493	22	2	-
	27	UK	224		168		405	25		21	2478	2835	12		31	-			22	70		157	28	140	2	20	12		346		14		-
	20	IS	6		100	242	15/1		30	24	18	2800		12	31	- 4	,		50	70	8	107	09	140	5	20		4	26		19	-	H
	30	U	2		-	1	1		2		6	1			1						3				- 1	-		5	10		1		
	31	NO	46		31	174	247	3	40	11	129	218	5	103	-	2			20	7	124	45	12	60	5	4	2	10	54	246	- 1	-	
	32	СН	94	6	26	105	595	4	69	3	330	382		134			7	1	8	4	159	125	23	38	2	- 4	2		261	281		-	
	33	MK	2	5	3		3	1			2	4	5	15	_	2	1				4	5	7	3	5	16			3				Ľ
	34	TR	299	35	663	170		78	47	124	934	628	11			217	600		557	5	487	246	3100	580	460	200	163		525				-
	35	ROW	6594	675	6042	5045	23374	1107	4866	1874	30990	24481	781	17434	542	1051	2222	110	4110	508	8545	5097	10865	9308	1814	1742	1309	6776	9043	18242	506	37	-
							_																										
	Outli	ie I	Dictionary	2010	2011	2012	2013	2014	2015	2016	2017 2	018	Annex																				

Results at regional level (NUTS 2 – 2016 classification)

- Erasmus region-to-region matrixes knowledge_erasmus_r2r.xlsx
- Spatial extent: EU27 + UK, Norway, Lichtenstein, Iceland and Switzerland + Rest of the world (ROW) + Turkey (from 2012 on) + Macedonia (from 2014 on)
- Temporal scope: 2010 to 2014
- **Source:** EU Open Data Portal Erasmus mobility statistics
- Data features:
 - Erasmus student exchange
 - 318 x 318 OD matrixes for 2010 and 2011
 - 325 x 325 OD matrix for 2012 and 2013
 - 326 x 326 OD matrix for 2014

🚔 👗 Cor	tar	ntar D Calibri					latos			₽; Q	(ué dese	a hacer? General				B		Comma 2		Comma 9		Normal 10	N	ormal 2	N	ormal 2.2			*		∑ Autosur	ыт <u>А</u>	-	<u>، ع</u>
igar Pin Cop										ar texto sinar y cent							ormato			Comma a		incorrecto		eutral		ilculo		8	Eliminar F	i u	🖗 Relienar	, Z	enary 1	\sim
. 👎 Cop	siar formato		s - 🗆							sinar y cent					condicion	al - come	tabla -	Normai		buvno		ncorrecto		ourai					-		🧶 Bornar -	61	rer * sel	leccior
Portapapa	eles I	5	Fuent			5		Alnea	:ión		- 6		súmero.	6							Estilos								Celdas			Modif	car	
M322	* I .		fa .																															
4 8	c	0	6	F	6	н	1.1	1.1		K I		M	N	0	P	Q	8	s	Т	U	V V	w	x	Y I	z	AA	AB	AC	AD	AE	AF	46	AH	
	-	-			-				_		_			-		~				-					-									-
		Ord		1	2	3	4	5		6 7	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	3
	_		untry B													BG						CZ								DK				
	Order Co			E10	8E21	BE22	8E23	BE24	BE	5 BE31	1 86	E32	BE33	8E34	BE35	BG31	BG32	BG33	BG34	8G41	BG42			C203	CZ04	C205	CZ05	C207	CZ08		DK02			
	1 85																					20								22		- 4	18	
	2	BE																			2	1								5				
	3	BE																1				9						2		22		3		
		BE																				13								35		6		
	6	863																2				1				1				33		0	1	
	7	863																															1	
	8	BES																															2	
	9	BES																				1							6				2	
	10	BES	14																															
	11	BEE	15																										3	2	2			
	12 80																																	
	13	BG		8				4		2												2									2			
	14	86				3		3		1												4						3					2	
	15	BG																				2						2						
	16	BG BG		17	-			5	1	10		1	3									17			4 :	1 0		3 3	5 1	(5 2	5	8	
	18 CZ			12					33	-	-	4	3							1 4				-	-	-		2		36	5 11	13	27	-
	19	CZC			~		a .		aa													1								31	, <u>,</u>		41	
	20	CZO		1			1		2																					4		8		
	21	CZC		2					2												2											3		
	22	CZC		3					1	6																						2		
	23	CZC	6	14		7		10	2	5			2				1	1 7				3								35		11		
	24	CZO		- 4		2		10	7				3							1	L											1		
	25	CZC						8	2	2			6			-						3						_					4	<u> </u>
	26 D#			4		1		3	9				1									5						1						
	27	DK						1	1													4												
	28	DK		2				2	1													4						1						
	30	DIO						4	4													1 3												
	31 DE			3	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	1			-	-	-	-	-		-	2	-	-
	32	DE		1				1	1							1						1								18		- 11		
	33	DE		7		0		1	8			5	4								L	13								27		4		
	34	DE							1													13								13		4		
	Outine			2010	2011	2012	2013	2014	201	5 2016	201	17 2	018	Annex	(+)							1 -												
	2000				2200		1.000	2014	1 201		1 201				U.																			

Analysis of the results:

- Analysis focused on bi-yearly intervals, where differences and similarities are more visible and significant
- Comparative analysis of the 2009-10, 2011-12 and 2013-14 periods
- Flows at country level and at regional level:
 - Country level
 - Total number, numbers per country
 - Comparison of students received/sent per 1000 inhabitants
 - Balance between number of sent and received students
 - Regional level
 - Sending regions, descriptive statistics
 - Receiving regions, descriptive statistics
 - Top 20 pairs of regions with largest mutual flows
 - Rank-size distribution of all regions

Analysis of the results

Country level. Total numbers per country

Table 2.5: Total student numbers per country, ranked by sent and received flows; comparison 2009-2010 and 2013-2014.

Sent				Rece	eived				Chai	nge 09-1	0 t	o 13-1	4
2009	-2010	2013	-2014	2009	-2010	2013	8-2014		Sent			Rece	eived
ES	27448	ES	31039	ES	29324	ES	30990		HR	394%		LV	151%
FR	24424	DE	30154	FR	22020	FR	24481		TR	71%		TR	109%
DE	24028	FR	26918	DE	17927	DE	23374		MT	62%		PL	96%
IT	19116	IT	22314	UK	16819	UK	18242		CY	57%		LU	93%
PL	11612	TR	13683	IT	15880	IT	17434		SK	49%		LT	86%
UK	8048	PL	11983	SE	8783	PL	10865		DK	46%		CY	82%
TR	8016	UK	10494	NL	7233	PT	9308		IE	40%		BG	68%
NL	5355	NL	7364	PT	6615	SE	9043		RO	40%		EE	68%
CZ	5338	BE	6419	FI	6076	NL	8545	-	NL	38%		RO	68%
BE	5250	CZ	6376	DK	5702	FI	6776		LI	32%		HU	66%
PT	4675	PT	5958	BE	5535	BE	6594		UK	30%		SI	53%
AT	4234	AT	4551	PL	5534	TR	6056		LV	28%		CZ	46%
FI	3529	FI	4524	AT	4204	CZ	6042		FI	28%		SK	45%
HU	3421	RO	4375	CZ	4136	AT	5097		PT	27%		PT	41%
RO	3129	EL	3455	IE	3958	DK	5045		NO	27%		DE	30%
EL	2790	SE	3336	NO	3409	IE	4866	-	DE	25%		NO	26%

- The main sending as well as receiving countries are Spain, France, Germany and Italy
- United Kingdom joins the top of the charts mainly as a receiving country
- Changes over the years have been more visible in the mid-to-lower ranks of the tables than in the more consolidated Erasmus countries. In only four years, the number of sent students increased by over 50% in Croatia, Turkey, Malta and Cyprus, revealing the growing integration of these more peripheral areas in the Erasmus network
- The preferred destination of these flows has been, respectively, Germany, Poland, the United Kingdom and Greece
- The attractiveness of small, formerly peripheral countries has increased (Cyprus, Latvia, Lithuania, Estonia), but also the growing importance of Turkey as a destination, greatly due to the Istanbul area

Analysis of the results

 Country level. Comparison of students received/sent per 1000 inhabitants

 Table 2.6: Send and received students per 1000 inhabitants. Comparison 2009-2010 and 2013-2014.

	Sent		Received	ļ		RANK Se	enders		RANK Re	ceivers
	2009-10	2013-14	2009-10	2013-14		2009-10	2013-14		2009-10	2013-1
BE	0.49	0.57	0.51	0.59		LU	LT		IS	IS
BG	0.19	0.20	0.05	0.09		LT	FI		FI	FI
CZ	0.51	0.61	0.40	0.57		IS	LU		МТ	МТ
DK	0.33	0.47	1.03	0.90		FI	LV		DK	IE
DE	0.29	0.38	0.22	0.29		ES	LI		SE	LI
EE	0.54	0.61	0.49	0.82		LV	ES		LI	SE
IE	0.35	0.49	0.88	1.07		SI	SI		IE	DK
EL	0.25	0.32	0.19	0.17		EE	EE		NO	PT
ES	0.59	0.66	0.63	0.66		LI	CZ		ES	NO
FR	0.38	0.42	0.34	0.37		cz	IS		PT	SI
HR	0.05	0.27	0.00	0.18		AT	BE		SI	EE
IT	0.32	0.37	0.27	0.30		BE	PT		BE	LT
CY	0.25	0.36	0.37	0.63		PT	AT		AT	ES
LV	0.57	0.78	0.19	0.52		FR	SK		EE	CY
LT	0.72	0.85	0.38	0.75		IE	IE		NL	AT
LU	0.90	0.80	0.12	0.20		HU	МТ		CZ	BE
HU	0.34	0.33	0.25	0.41		SK	DK		LT	CZ
					1			1		

- Student movements per 1000 inhabitants in the Erasmus+ space have increased substantially between 2009-2010 and 2013-2014
- Sending flows: smaller and/or sparsely populated countries with high levels of education like Luxembourg, the Baltic states, Finland and lceland send abroad large numbers of students considering their population. Spain is the only major Erasmus country in absolute terms also ranking highly in relative terms. On the opposite side, the United Kingdom performs poorly as a sending country, considering its large population
- Receiving flows: all the Nordic countries rank highly given their population. They have high standards of higher education and are popular destinations for student mobility. Mediterranean countries like Malta and Portugal also perform well as receivers, even if they do not stand out as senders. Ireland – with the advantage of being an Englishspeaking country - is an increasingly popular student destination

- Analysis of the results
- Country level. Balance between the number of sent and received students
 - Some countries tend to "specialize" as either senders or receivers
 - Large outward flows can mean that a country or region has a mobile and engaged student population with an interest for learning abroad. But if it comes with comparatively small inward flows it can point to a gradual 'brain drain' of a highly educated sector of the population and/or mean that the sending country/region does not have sufficiently attractive higher education institutions or related infrastructure
 - The opposite low outward and high inward flows point to the attractiveness of the country/region for higher education studies, but puts into question the engagement of, and the opportunities given to, the local student population

Table 2.7: Balance between sending and receiving flows. Positive percentages mean countries with larger receiving than sending flows, negative percentage mean countries with larger sending than receiving flows.

country	2009-2010	country	2013-2014	
MT	267.2%	NO	176.3%	
SE	222.0%	SE	171.1%	T I
DK	218.0%	IS	160.8%	
NO	170.8%	мт	158.6%	
IE	147.4%	IE	120.8%	
UK	109.0%	DK	92.7%	
IS	90.7%	UK	73.7%	
FI	72.2%	CY	73.2%	RECEIVERS
Ц	68.4%	FI	60.0%	▲
CY	49.2%	PT	56.2%	
PT	41.5%	ш	48.0%	
NL	35.1%	EE	35.4%	
ES	6.8%	SI	32.0%	
BE	5.4%	ни	27.2%	I
SI	1.8%	NL	15.7%	
AT	-0.7%	AT	12.0%	
EE	-8.7%	BE	3.4%	BALANCED
FR	-9.8%	ES	-0.1%	BALANCED
IT	-16.9%	СН	-2.2%	
CZ	-22.5%	CZ	-5.2%	
DE	-25.4%	PL	-9.3%	
EL	-26.2%	FR	-10.6%	
HU	-27.7%	LT	-12.3%	⊥
LT	-47.5%	IT	-20.2%	•
sк	-49.7%	DE	-23.4%	SENDERS
PL	-52.3%	HR	-32.7%	1
TR	-63.8%	LV	-33.8%	
RO	-65.5%	EL	-47.5%	
LV	-66.2%	SK	-51.1%	
BG	-72.2%	BG	-52.9%	
LU	-87.2%	TR	-56.0%	▼
HR	-100.0%	RO	-58.6%	
МК		LU	-74.5%	
СН		МК	-100.0%	

Analysis of the results

- Regional level. Sending regions, descriptive statistics; NUTS 2 regions, 2009-2010, 2011-2012 and 2013-2014
- A main sending region
- B number of destination regions receiving from main sending region
- C total sent by main sending region
- D total sent by main sending region as percentage of the total sent by country
- E main destination region of main sending region
- F total sent to main destination region by main sending region
- G percentage of main sending region sent to main destination region
- H total received from main sending region in main destination region as percentage of received in country
- I total received in main destination region
- J total received from main sending region as percentage of received in main destination region
- K total received in destination country
- L total received from main sending region as percentage of total received in destination country

110

FR10 – Ile-de-France (Paris)	ES30 – Madrid	ITI4 – Lazio (Rome)
FRK2 – Rhone-Alpes	ES51 – Andalucia	ITC4 – Lombardia
DE30 – Berlin	ES61 – Catalunya	TR10 – Istanbul
PT17 – Lisboa	ES52 – Comun. Valenciana	TR51 - Ankara
SE11 – Stockholm	PL91 - Warszawa	

	top 10	sending ı	regions 2	009-2010								
	Α	В	С	D	E	F	G	Н	I	J	K	L
1	ES30		6186	22.5%	FR10	459	7.4%	1.7%	6900	6.7%	22020	2.1%
2	FR10		5942	24.3%	ES30	517	8.7%	2.1%	6353	8.1%	29324	1.8%
3	ES61		5901	21.5%	ITI4	373	6.3%	1.4%	2641	14.1%	15880	2.3%
4	ITI4		4852	25.4%	ES30	396	8.2%	2.1%	6353	6.2%	29324	1.4%
5	ES51		3399	12.4%	FR10	181	5.3%	0.7%	6900	2.6%	22020	0.8%
6	ITC4		3316	17.3%	FR10	259	7.8%	1.4%	6900	3.8%	22020	1.2%
7	DE30		3164	13.2%	FR10	226	7.1%	0.9%	6900	3.3%	22020	1.0%
8	ES52		3116	11.4%	ITI4	138	4.4%	0.5%	2641	5.2%	15880	0.9%
9	FRK2		3028	12.4%	SE11	185	6.1%	0.8%	3728	5.0%	8783	2.1%
10	PL91		2559	22.0%	FR10	119	4.7%	1.0%	6900	1.7%	22020	0.5%

top 10 sending regions 2013-2014 F G Н J Κ В С D Е Т ES30 236 6921 22.3% FR10 423 6.1% 1.4% 7385 5.7% 24487 1.7% 2 206 ES30 480 FR10 6856 25.0% 7.0% 1.8% 7574 6.3% 30994 1.5% **ES61** 240 6218 20.0% ITI4 368 5.9% 1.2% 4390 8.4% 17808 2.1% 3 212 1.8% 5.2% 4 ITI4 5399 24.2% ES30 393 7.3% 7574 30994 1.3% 215 14.7% ITI4 4.5% 0.7% 4.7% 5 ES51 4554 206 4390 17808 1.2% 205 4229 FR10 6.9% 1.3% 7385 4.0% 6 ITC4 19.0% 293 24487 1.2% **DE30** 187 3825 12.5% **FR10** 241 6.3% 0.8% 7385 3.3% 24487 1.0% 8 TR10 209 3729 27.1% **FR10** 155 4.2% 1.1% 7385 2.1% 24487 0.6% TR51 208 3593 26.1% **PL61** 116 3.2% 0.8% 475 24.4% 10865 1.1% ES52 205 3571 ITI4 118 3.3% 0.4% 4390 2.7% 17808 0.7% 11.5%

Analysis of the results

- Regional level. Sending regions, descriptive statistics; NUTS 2 regions, 2009-2010 and 2013-2014
- The regional level tables confirm the observations at country level: Southern Europe dominates the Erasmus mobility flows. Madrid (ES30), Paris/Ile-de-France (FR10), Andalucia (ES61) and Lazio/Rome (ITI4) are the main sending regions
- From a total number varying between 317 and 325 NUTS 2 regions, the main senders are connected to a high number of partners, usually close to 200
- Major sending regions tend to have a strong weight in the total number of students send by each country (see column D in the table), especially capital city regions. Paris, Madrid and Rome comprise roughly 25% of all national outward flows, while their NUTS 2 populations vary, respectively, between 18% and 10% of the national population

FR10 – Ile-de-France (Paris)	ES30 – Madrid	ITI4 – Lazio (Rome)
FRK2 – Rhone-Alpes	ES51 – Andalucia	ITC4 – Lombardia
DE30 – Berlin	ES61 – Catalunya	TR10 – Istanbul
PT17 – Lisboa	ES52 – Comun. Valenciana	TR51 - Ankara
SE11 – Stockholm	PL91 - Warszawa	

	top 10 s	sending	regions 2	009-2010								
	Α	В	С	D	E	F	G	Н	I	J	K	L
1	ES30		6186	22.5%	FR10	459	7.4%	1.7%	6900	6.7%	22020	2.1%
2	FR10		5942	24.3%	ES30	517	8.7%	2.1%	6353	8.1%	29324	1.8%
3	ES61		5901	21.5%	ITI4	373	6.3%	1.4%	2641	14.1%	15880	2.3%
4	ITI4		4852	25.4%	ES30	396	8.2%	2.1%	6353	6.2%	29324	1.4%
5	ES51		3399	12.4%	FR10	181	5.3%	0.7%	6900	2.6%	22020	0.8%
6	ITC4		3316	17.3%	FR10	259	7.8%	1.4%	6900	3.8%	22020	1.2%
7	DE30		3164	13.2%	FR10	226	7.1%	0.9%	6900	3.3%	22020	1.0%
8	ES52		3116	11.4%	ITI4	138	4.4%	0.5%	2641	5.2%	15880	0.9%
9	FRK2		3028	12.4%	SE11	185	6.1%	0.8%	3728	5.0%	8783	2.1%
10	PL91		2559	22.0%	FR10	119	4.7%	1.0%	6900	1.7%	22020	0.5%

	top 10	<u>sending</u>	regions	2013-201	4	-	-		-			
	А	В	С	D	Е	F	G	Н	1	J	K	L
1	ES30	236	6921	22.3%	FR10	423	6.1%	1.4%	7385	5.7%	24487	1.7%
2	FR10	206	6856	25.0%	ES30	480	7.0%	1.8%	7574	6.3%	30994	1.5%
3	ES61	240	6218	20.0%	ITI4	368	5.9%	1.2%	4390	8.4%	17808	2.1%
4	ITI4	212	5399	24.2%	ES30	393	7.3%	1.8%	7574	5.2%	30994	1.3%
5	ES51	215	4554	14.7%	ITI4	206	4.5%	0.7%	4390	4.7%	17808	1.2%
6	ITC4	205	4229	19.0%	FR10	293	6.9%	1.3%	7385	4.0%	24487	1.2%
7	DE30	187	3825	12.5%	FR10	241	6.3%	0.8%	7385	3.3%	24487	1.0%
8	TR10	209	3729	27.1%	FR10	155	4.2%	1.1%	7385	2.1%	24487	0.6%
9	TR51	208	3593	26.1%	PL61	116	3.2%	0.8%	475	24.4%	10865	1.1%
10	ES52	205	3571	11.5%	ITI4	118	3.3%	0.4%	4390	2.7%	17808	0.7%

n 10 receiving regions 2009-201

Analysis of the results

- Regional level. Receiving regions, descriptive statistics; NUTS 2 regions, 2009-2010 and 2013-2014
- A main receiving region
- B number of origin regions sending to main receiving region
- C total received by main receiving region
- D total received by main receiving region as percentage of the total received by country
- E main origin region sending to main receiving region
- F total received in main receiving region from main sending region
- G percentage of main receiving region sent by main origin region
- H total received in main destination region sent by main sending region as percentage received in country
- I total send by main origin region
- J total received in main receiving region as percentage of total sent by main origin region
- K total sent from origin country
- L total sent to main receiving region as percentage of sent from origin country

112	ESPON // Interregional Relations in Europe

		top to receiving regions 2003-2010										
	А	В	С	D	Е	F	G	Н	1	J	K	L
1	FR10	211	6900	31.3%	ES30	459	6.7%	2.1%	6186	7.42%	24424	1.9%
2	ES30	224	6353	21.7%	FR10	517	8.1%	1.8%	5942	8.70%	27448	1.9%
3	ES61	219	6006	20.5%	ITI4	356	5.9%	1.2%	4852	7.34%	27448	1.3%
4	ES52	213	4699	16.0%	ITI4	242	5.2%	0.8%	4852	4.99%	27448	0.9%
5	ES51	216	4198	14.3%	ITI4	276	6.6%	0.9%	4852	5.69%	27448	1.0%
6	ITI4	200	4063	25.6%	ES30	384	9.5%	2.4%	6186	6.21%	19116	2.0%
7	SE11	195	3728	42.4%	FR10	236	6.3%	2.7%	5942	3.97%	2728	8.7%
8	DE30	193	3571	19.9%	FR10	269	7.5%	1.5%	5942	4.53%	24028	1.1%
9	PT17	200	3244	49.0%	ES61	146	4.5%	2.2%	5901	2.47%	4675	3.1%
10	FRK2	187	2848	12.9%	ITI4	171	6.0%	0.8%	4852	3.52%	24424	0.7%

	top 10	top 10 receiving regions 2013-2014										
	А	В	С	D	E	F	G	Н	1	J	K	L
1	ES30	236	7574	24.4%	FR10	480	6.3%	1.5%	6856	7.0%	27379	1.8%
2	FR10	222	7385	30.2%	ES30	423	5.7%	1.7%	6921	6.1%	31039	1.4%
3	ES61	243	6580	21.2%	ITI4	376	5.7%	1.2%	5399	7.0%	22314	1.7%
4	PT17	227	4699	50.5%	ES30	214	4.6%	2.3%	6921	3.1%	31039	0.7%
5	ES51	227	4500	14.5%	ITI4	262	5.8%	0.8%	5399	4.9%	22314	1.2%
6	ITI4	220	4390	24.7%	ES61	368	8.4%	2.1%	6218	5.9%	31039	1.2%
7	ES52	215	4213	13.6%	ITI4	201	4.8%	0.6%	5399	3.7%	22314	0.9%
8	DE30	199	4105	17.6%	FR10	258	6.3%	1.1%	6856	3.8%	27379	0.9%
9	SE11	202	4071	45.0%	FR10	261	6.4%	2.9%	6856	3.8%	27379	1.0%
10	TR10	195	3545	58.5%	DE30	169	4.8%	2.8%	3825	4.4%	30522	0.6%

Analysis of the results

- Regional level. Receiving regions, descriptive statistics; NUTS 2 regions, 2009-2010 and 2013-2014
- Dominance of Madrid (ES30) and Paris/Ile-de-France
- The remaining Spanish regions perform better as receivers than as senders and approach the top of the tables, to the disadvantage of Italian regions, with only Lazio/Rome remains in a slightly lower rank
- the issue of regional hegemony corresponds precisely to what was detected in the sending regions analysis. The top 10 regions - roughly 3% of the total – also attract about 25% of all the incoming flows, suggesting that the general distribution of the regions follows a power law in which the top players see their results boosted in comparison to others

		top 10	top 10 receiving regions 2009-2010										
		А	В	С	D	Е	F	G	Н	1	J	K	L
	1	FR10	211	6900	31.3%	ES30	459	6.7%	2.1%	6186	7.42%	24424	1.9%
	2	ES30	224	6353	21.7%	FR10	517	8.1%	1.8%	5942	8.70%	27448	1.9%
	3	ES61	219	6006	20.5%	ITI4	356	5.9%	1.2%	4852	7.34%	27448	1.3%
	4	ES52	213	4699	16.0%	ITI4	242	5.2%	0.8%	4852	4.99%	27448	0.9%
	5	ES51	216	4198	14.3%	ITI4	276	6.6%	0.9%	4852	5.69%	27448	1.0%
	6	ITI4	200	4063	25.6%	ES30	384	9.5%	2.4%	6186	6.21%	19116	2.0%
	7	SE11	195	3728	42.4%	FR10	236	6.3%	2.7%	5942	3.97%	2728	8.7%
	8	DE30	193	3571	19.9%	FR10	269	7.5%	1.5%	5942	4.53%	24028	1.1%
	9	PT17	200	3244	49.0%	ES61	146	4.5%	2.2%	5901	2.47%	4675	3.1%
ĺ	10	FRK2	187	2848	12.9%	ITI4	171	6.0%	0.8%	4852	3.52%	24424	0.7%

	top 10	receiving	g regions	s 2013-20 [,]	14							
	А	В	С	D	E	F	G	Н	1	J	К	L
1	ES30	236	7574	24.4%	FR10	480	6.3%	1.5%	6856	7.0%	27379	1.8%
2	FR10	222	7385	30.2%	ES30	423	5.7%	1.7%	6921	6.1%	31039	1.4%
3	ES61	243	6580	21.2%	ITI4	376	5.7%	1.2%	5399	7.0%	22314	1.7%
4	PT17	227	4699	50.5%	ES30	214	4.6%	2.3%	6921	3.1%	31039	0.7%
5	ES51	227	4500	14.5%	ITI4	262	5.8%	0.8%	5399	4.9%	22314	1.2%
6	ITI4	220	4390	24.7%	ES61	368	8.4%	2.1%	6218	5.9%	31039	1.2%
7	ES52	215	4213	13.6%	ITI4	201	4.8%	0.6%	5399	3.7%	22314	0.9%
8	DE30	199	4105	17.6%	FR10	258	6.3%	1.1%	6856	3.8%	27379	0.9%
9	SE11	202	4071	45.0%	FR10	261	6.4%	2.9%	6856	3.8%	27379	1.0%
10	TR10	195	3545	58.5%	DE30	169	4.8%	2.8%	3825	4.4%	30522	0.6%

Analysis of the results

- Regional level. Top 20 pairs of regions with largest flows
- Dominance of Southern European interregional relations, (Spain, France, Italy), with only occasional appearances from other regions, usually large capitals (London, Berlin, Stockholm, Lisbon).
- Not only are Southern European regions popular student destinations as well as senders, but they also tend to build more intensive exchanges with nearby countries, with some linguistic, cultural and climate proximity. The Paris-Madrid bilateral link is particularly strong, consistently at the top of the tables.
- Among the NUTS 2 regions that dominate the tables, the pattern of strongly networked regions is rather multicentric in Spain and Italy, each with four regions represented which tend to mutually connect, the regular presence of France is limited to one region (Ile-de-France/Paris). This illustrates the centralized territorial and urban system of France

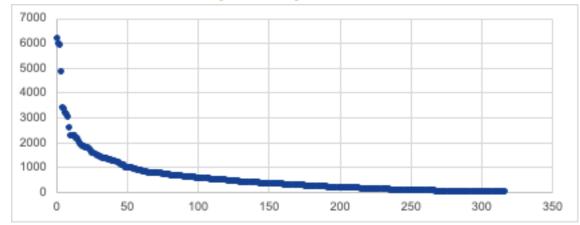
FR10 – Ile-de-France (Paris)	ES30 – Madrid	ITI4 – Lazio (Rome)
UKI3-7* - London	ES51 – Andalucia	ITC4 – Lombardia
DE30 – Berlin	ES61 – Catalunya	ITI1 – Toscana
PT17 – Lisboa	ES52 – Comun. Valenciana	ITH5 – Emilia Romagna
SE11 – Stockholm		

NUTS 2 region pairs with greatest mutual interaction 2009-10 to 2013-14. Colours are used to differentiate between countries and regions

	2009-2010			2011-2012			2013-14		
	Sending	Receiving	No.	Sending	Receiving	No.	Sending	Receiving	No.
1	FR10	ES30	517	FR10	ES30	541	FR10	ES30	480
2	ES30	FR10	459	ES30	FR10	505	ES30	FR10	423
3	ITI4	ES30	396	ES61	ITI4	454	ITI4	ES30	393
4	ES30	ITI4	384	ES30	ITI4	440	ITI4	ES61	376
5	ES61	ITI4	373	ITI4	ES30	423	ITI4	FR10	374
6	ITI4	FR10	368	ITI4	ES61	402	ES61	ITI4	368
7	ITI4	ES61	354	ITI4	FR10	368	ES30	ITI4	334
8	ITI4	ES51	276	FR10	ES61	273	FR10	UKI3-7*	305*
9	FR10	DE30	269	ITC4	FR10	266	ITC4	FR10	293
10	ITC4	FR10	259	ES61	ITH5	259	ITI4	ES51	262
11	FR10	UKI3-7*	251*	ITC4	ES30	259	FR10	SE11	261
12	FR10	ES51	247	FR10	DE30	258	FR10	DE30	258
13	FR10	ES61	245	ES61	FR10	257	ITC4	ES30	256
14	ITI4	ES52	242	FR10	UKI3-7*	257*	DE30	FR10	241
15	FR10	SE11	236	ITI4	ES51	252	UKI3-7*	FR10	238*
16	ES61	ITI1	231	FR10	SE11	246	ES61	ITH5	228
17	DE30	FR10	226	ES30	ITI1	241	FR10	ES61	225
18	ITC4	ES30	220	ES30	ITC4	241	ES30	PT17	214
19	ES61	FR10	217	DE30	FR10	238	ITC4	ES51	209
20	ES30	ITC4	215	ES61	ITI1	235	ES51	ITI4	206

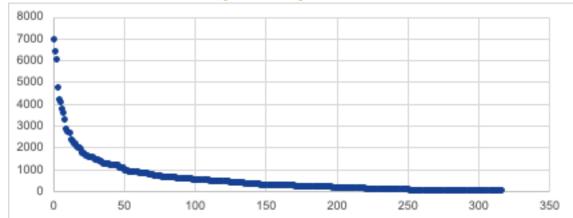
Analysis of the results

Regional level. Balance between the number of sent and received students in NUTS 2 regions

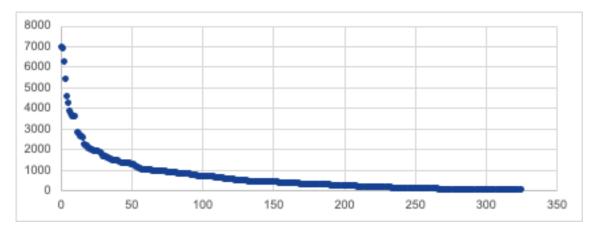

- The high receivers are Nordic regions, namely in Norway and Sweden, in most cases barely populated regions in the North with a small student population, but which may have specialized higher education institutions attracting a specific cohort of students
- There are regions whose higher education institutions are less well-ranked - and less wellknown abroad – and whose language is less commonly spoken by foreign visitors
- There is no particular trend for the most balanced regions other than they include some concentration of Dutch, Spanish and Polish regions

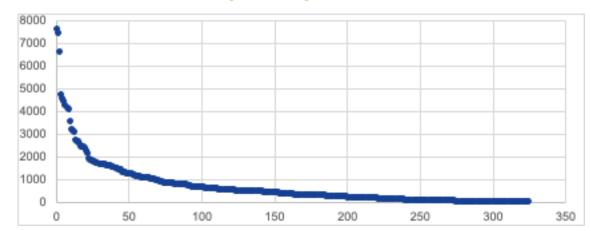
Major se	Major senders							Major receivers					
2009-2010 2011-2012		12	2013-2014			2009-2010		2011-2012		2013-2	2013-2014		
TR72	-96.6%	UKJ4	-98.6%		TRB1	-95.1%	SE31	909.8%		NO07	750.0%	NO03	575.6%
PL62	-95.5%	TRA2	-97.2%		TRC1	-94.4%	UKH2	750.0%		SE31	691.8%	SE32	575.0%
TR32	-93.5%	TR63	-96.7%		TR72	-90.5%	SE23	607.3%		NO03	650.0%	SE23	564.6%
TR63	-92.5%	TRB1	-95.3%		TRA1	-90.4%	DK05	559.0%		UKH2	647.9%	UKH2	506.8%
TRC1	-90.4%	TR82	-95.0%		TR71	-85.7%	UKG2	521.4%		SE32	628.5%	NL23	328.5%
RO41	-89.3%	TR72	-93.5%		TR33	-84.8%	NO03	504.3%		UKI7	610.0%	NO07	312.5%
TRA1	-89.2%	TRA1	-92.3%		TR52	-83.3%	DK03	443.9%		UKF3	560.0%	UKK2	268.7%
LU00	-87.2%	TRC1	-87.5%		TR32	-83.2%	UKF3	395.0%		MT00	355.3%	UKF3	263.1%
TRA2	-86.7%	EL64	-87.5%		RO41	-82.0%	DK04	336.5%		SE23	352.8%	UKI7	252.8%
TR52	-84.6%	TR83	-84.0%		EL64	-81.2%	UKG1	333.3%		UKG1	327.2%	NO06	237.8%
BG32	-80.1%	TR33	-83.9%		BG34	-80.8%	NO07	314.3%		UKI4	319.4%	UKM6	233.3%
TR22	-79.7%	TR21	-83.6%		TR83	-79.7%	MT00	267.2%		DK05	311.5%	PT15	200.0%
ITF5	-79.0%	RO41	-81.5%		RO42	-79.6%	UKI4	257.2%		DK03	273.8%	UKI6	194.7%
TR83	-78.8%	LU00	-80.1%		TR62	-78.0%	PT30	253.8%		UKK3	263.4%	UKI4	193.3%
TR42	-78.0%	TR71	-80.0%		TR41	-77.7%	NO04	253.0%		DK04	234.5%	UKK3	185.7%
BG34	-76.2%	TR42	-78.9%		TR51	-77.0%	UKI7	232.8%		UKE1	221.5%	SE21	163.7%
TR90	-75.9%	TR41	-78.5%		TR61	-76.4%	UKM5	232.7%		UKI6	216.9%	IS00	160.8%
TR61	-75.8%	DE93	-74.5%		LU00	-74.4%	PT20	227.3%		SE21	212.5%	IE05	160.5%
TR51	-74.9%	TR51	-74.3%		RO21	-72.9%	NO02	220.8%		UKG2	200.0%	MT00	156.5%
TR33	-74.8%	TR52	-73.3%		TR21	-68.0%	SE11	211.7%		NO06	197.0%	SE22	151.3%

Balance between sending and receiving flows in NUTS 2 regions. Positive percentages mean countries with larger receiving than sending flows, negative percentages mean countries with larger sending than receiving flows.


Analysis of the results

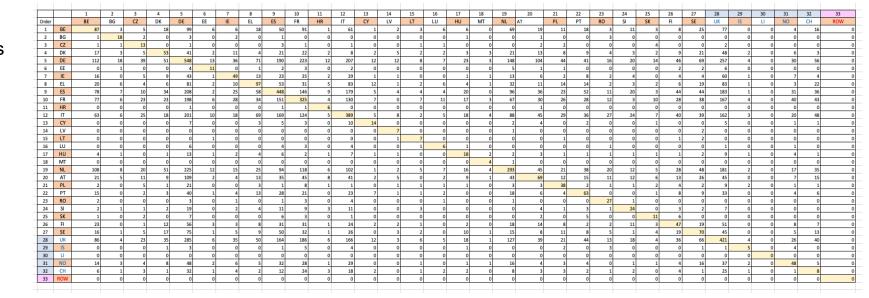
- Regional level. Rank-size distribution of sending and receiving regions
- The tables show the distribution of student mobility numbers by rank of NUTS 2 region.
- Objective: to verify whether the distribution follows a power law similar to what is usually observed when plotting city or region populations according to rank. This would indicate a small selection of highly-ranked regions very active as senders and receivers (or both), arguably achieving hegemony, followed by many regions with little variation among them.


Rank-size distribution of sending NUTS 2 regions, 2009-2010.

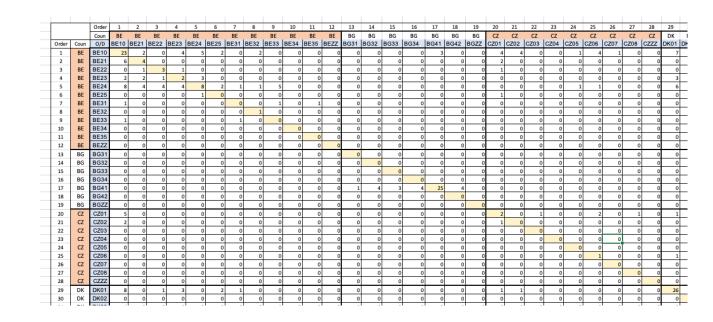

Analysis of the results

- Regional level. Rank-size distribution of sending and receiving regions
- The tables show the distribution of student mobility numbers by rank of NUTS 2 region.
- Objective: to verify whether the distribution follows a power law similar to what is usually observed when plotting city or region populations according to rank. This would indicate a small selection of highly-ranked regions very active as senders and receivers (or both), arguably achieving hegemony, followed by many regions with little variation among them.

Rank-size distribution of sending NUTS 2 regions, 2013-2014.

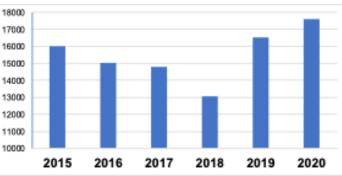

Results

12. Interregional Flows of Knowledge. Horizon 2020 partnerships


- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)
- Descriptive statistics

Results at country level (NUTS 0)

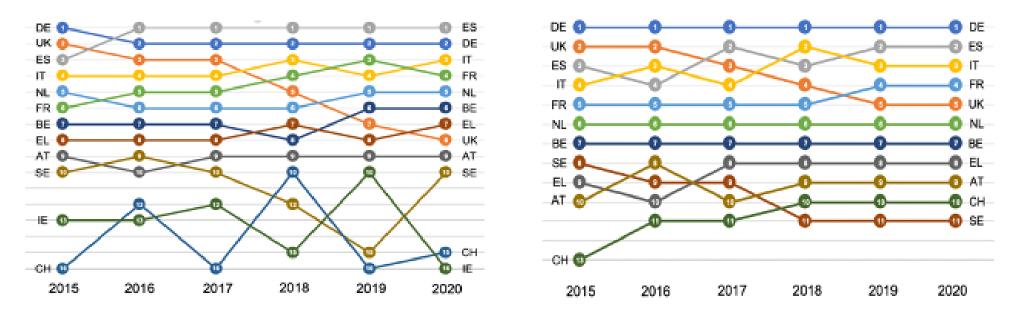
- H2020 country-to-country matrixes knowledge_h2020_c2c.xlsx
- Spatial extent: EU27 + UK, Norway, Lichtenstein, Iceland and Switzerland
- Temporal scope: 2015 to 2020
- **Source:** CORDIS database (organizations and projects)
- Data features:
 - Partnerships in H2020 networks
 - 32 x 32 OD matrixes C2C



- Results at regional level (NUTS 2 2016 classification)
 - H2020 region-to-region matrices knowledge_h2020_r2r.xlsx
 - Spatial extent: EU27 + UK, Norway, Lichtenstein, Iceland and Switzerland
 - Temporal scope: 2015 to 2020
 - Source: CORDIS database (organizations and projects)
 - Data features:
 - Partnerships in H2020 networks
 - 329 x 329 OD matrix R2R

Analysis of the results:

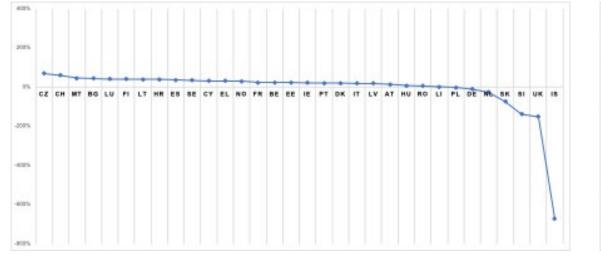
- Analysis transforms coordinating and participating partner roles in origin and destination logic for the matrices
- Comparative analysis between 2015 and 2020
- Flows at country level and at regional level:
 - Country level
 - Rank as sender (number of partnerships as project coordinator), for each year; changes over time.
 - Rank as receiver (number of partnerships as project participant), for each year; changes over time.
 - Send-receive balance (ratio between coordinator and participant roles); changes over time.
 - Percentage of international partnerships (vs. national ones).
 - Preferred international partner of each country (2015 and 2020).

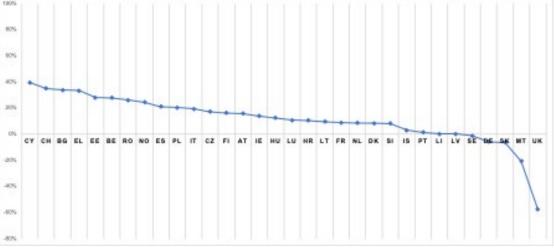

Changes in the total number of H2020 project partnerships among ESPON countries from 2015 to 2020.

Analysis of the results:

- Analysis transforms coordinating and participating partner roles in origin and destination logic for the matrices.
- Comparative analysis between 2015 and 2020
- Flows at country level and at regional level:
 - Regional level
 - Rank as sender (number of partnerships as project coordinator), top 25 for each year; changes over time.
 - Rank as receiver (number of partnerships as project participant), top 25 for each year; changes over time.
 - Weight of leading regions in respective countries
 - Send-receive balance (ratio between coordinator and participant roles), top 25 for each year.
 - Strongest partnerships (most frequent region pairs), highlighting whether these are intra-regional, national or international
 - Proportion of strongest partnership in total partnership (sender) count (2015 and 2020).
 - European capital regions, top performers (as coordinators), trends 2015-2020

• Analysis of the results. Country level:

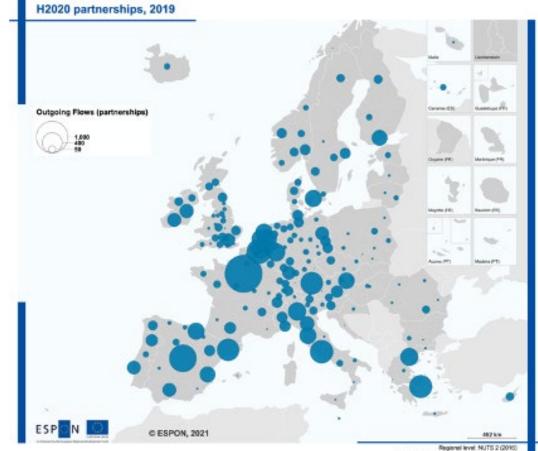

 Changes in country rank – in coordinating and participant roles: DE, ES, IT at the top, UK regular drop; rise of smaller countries



4

• Analysis of the results. Country level:

- Send-receive balance sender/participant ratio kept/increased in most countries; big drops in IS, UK, SI, SK (2015-2020)
- Send receive balance participant/sender role strongly increased in most countries; big drops in UK, MT (2015-2020)

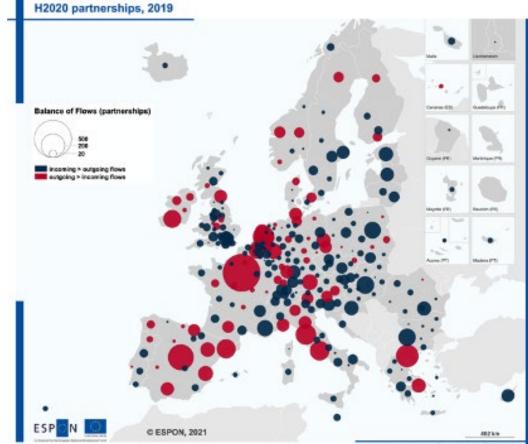

• Analysis of the results. Country level:

- International partnerships are majority in most countries, kept high 2015-2020 (>80%)
- Strong losses in RO, BG, PL, strong gains in LV, HR, LT, CZ
- Preferred international partner tends to be DE (19 out of 32 countries). UK had relevant role, gradually lost between 2015-2020.
- Weight of preferred partnership in total partnerships varies between 4% and 50%, median value around 14%.

	International par year 2015	year 2020
СН	95%	89%
AT	88%	86%
BE	88%	88%
FI	88%	87%
IE	85%	85%
NO	85%	85%
DK	85%	89%
EL	85%	83%
SE	85%	91%
IS	84%	75%
NL	81%	82%
HU	80%	78%
PT	80%	85%
FR	79%	78%
SI	79%	81%
LU	79%	93%
UK	78%	78%
DE	77%	82%
IT	77%	75%
CY	76%	83%
ES	75%	76%
SK	75%	84%
EE	73%	85%
PL	67%	55%
CZ	61%	92%
LT	46%	81%
BG	44%	27%
HR	40%	63%
RO	39%	13%
LV	30%	67%
MT	20%	33%
LI	N/A	N/A

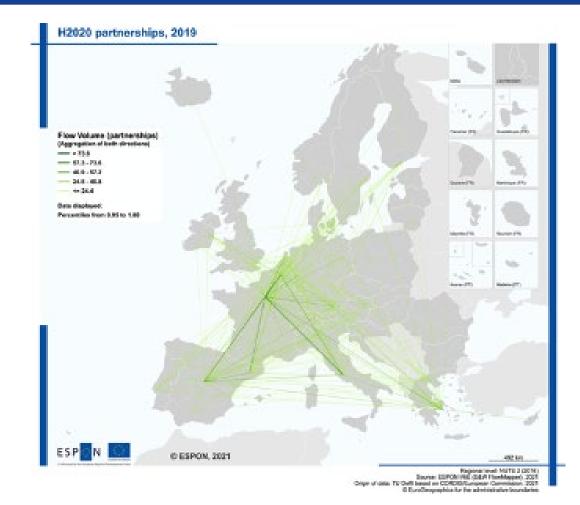
	Preferred	partne	er country	
	year 20	15	year 20	20
BE	DE	14%	DE	13%
BG	DE	9%	AT	4%
CZ	SK	12%	ES	10%
DK	UK	14%	DE	15%
DE	UK	11%	FR	9%
EE	UK	15%	FI	13%
IE	UK	18%	ES	11%
EL	UK	13%	ES	11%
ES	DE	11%	DE	11%
FR	DE	13%	DE	14%
HR	DE	10%	CH	13%
IT	DE	12%	DE	11%
CY	IT	17%	EL	18%
LV	SE	20%	DE	17%
LT	SE	15%	DE	14%
LU	DE	21%	DE	13%
HU	DE	14%	DE	17%
MT	NL	20%	UK	11%
NL	DE	14%	DE	14%
AT	DE	18%	DE	15%
PL	DE	18%	IT	14%
PT	DE	13%	ES	10%
RO	IT	9%	DE	4%
SI	DE	17%	DE	21%
SK	DE	16%	DE	16%
FI	DE	14%	DE	9%
SE	DE	16%	DE	15%
UK	DE	15%	FR	12%
IS	FR	16%	FR	50%
LI	N/A	N/A	N/A	N/A
NO	DE	15%	DE	10%
СН	DE	18%	DE	16%

- Analysis of the results. Regional level (sending role):
 - FR10 has large advantage over all other regions. Other top performers are ES30, ES51, ES21, ITI4, DE21, EL30, BE10, NL33, FI1B.
 - Strong decrease of London during study period.
 - Two patterns visible at the top: regions that capture (much) more than half of their national flows (FR10, BE10, EL30, FI1B), and high performers that capture less than one third of the national flows.
 - One third of all regions with zero coordinating project roles. Most unbalanced countries here are BG, HU, HR, RO, SE. Most balanced are NO, CH, FI, IE.
 - Patterns very similar in receiving role.



Regional even. NUTS 2 (2015) Source: ESPON IRE (SSW FlowMapper), 2121 Sign of date: TU Delft based on CORDIS/European Commission, 2121 III DuroCacomotics for the actinization boundaries

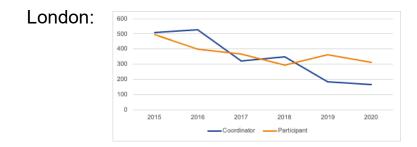
- Analysis of the results. Regional level (send-receive balance):
 - Top performers discussed earlier do well both as senders and receivers (coordinators and participants)
 - No clear geographical pattern in specialized receivers and senders, balance changes every year. Smaller regions tend to be more unbalanced, with the exception of RO32 (Bucarest), a big receiver.

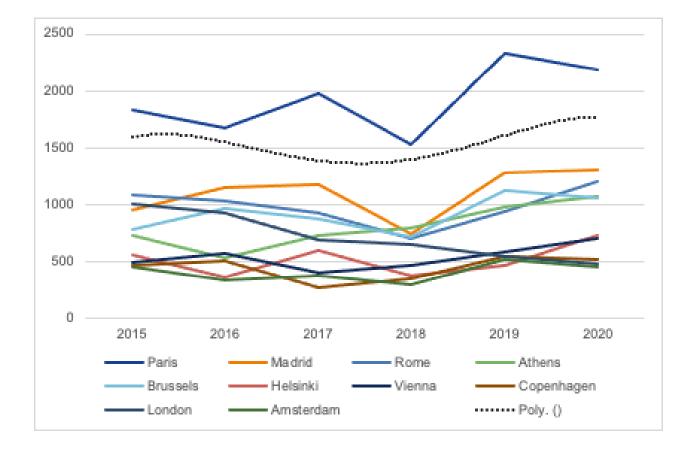

Top 10 Specialized Receivers (Project Participants)

2015		2016		2017		2018		2019		2020	
Reg.	Ratio	Reg.	Ratio	Reg.	Ratio	Reg.	Ratio	Reg.	Ratio	Reg.	Ratio
CZ01	-1486%	FI1C	-2800%	FRB0	-2300%	RO32	-2733%	DE14	-4700%	DE14	-2100%
LT01	-1200%	BE31	-2600%	PL21	-1600%	FI1C	-1700%	UKI4	-4500%	ES13	-1900%
DE23	-1100%	DE27	-1600%	SK01	-975%	FRG0	-1600%	FRL0	-3100%	PL91	-986%
HU33	-1100%	PL63	-1600%	PL22	-900%	DED5	-1500%	BE31	-2900%	BE31	-933%
UKC1	-1050%	FRK1	-1300%	FRH0	-880%	NO05	-1200%	BE33	-2900%	SI03	-840%
DE72	-1000%	CZ02	-1150%	DE C0	-850%	SE22	-1025%	NO04	-2100%	ES53	-750%
ES13	-1000%	BE22	-1100%	ITI3	-850%	FRE2	-800%	HR03	-1900%	IS00	-750%
NO02	-1000%	DE72	-1000%	PL41	-775%	SI03	-800%	ITF1	-1700%	BE32	-700%
RO32	-742%	SK04	-1000%	RO32	-764%	SK01	-800%	DE23	-1500%	ITH4	-700%
PL41	-620%	DEB1	-900%	DEB3	-700%	DED2	-700%	CH06	-1200%	FRC1	-500%

Regional level: NUTS 2 (2016) Source: ESPON IRIE (SSW FlowMapper), 2021 Origin of date: TU Delt based on CORDIS/European Commission, 2021 @ EuroGeographics for the administrative boundaries

- Analysis of the results. Regional level (strongest partnerships):
 - Strongest connections tend to be within the same regions (FR10-FR10, ES51-ES51, etc.), tendency to pair up with close-by partners.
 - Then come international partnerships. Strongest one in 2020 is FR10-BE10 (Paris-Brussels), most strong international links involve FR10.
 - National inter-regional partnerships do not appear at the top, except Spanish regions.
 - Strongest partnerships are among top performers, meaning that their share of the total number of partnerships is not too high.


- Analysis of the results. Regional level (patterns of change):
 - Fastest-growing regions depart from modest starting points (CZ01, EL63, CH03 as senders; CH06, RO11, HR03 as receivers) but a few start high and grow a lot (ES61, ITH3, SE23 as senders, ITF3 as receiver)
 - Many UK regions have reduced their sending role (coordinators) to zero between 2015 and 2020.
 - Remote and rural regions are the fastest-shrinking ones, except RO32 (Bucarest).


Top 10 Emerging Coordinating (Sending) Partner Regions							
2015							
Region	# 2015	# 2020	% change				
CZ01	7	48	586%				
ES61	27	153	467%				
ITH3	21	115	448%				
EL63	5	25	400%				
DED5	18	80	344%				
CH03	8	33	313%				
NO07	7	26	271%				
SE23	105	387	269%				
DK05	10	36	260%				
AT31	8	26	225%				

Top 10 Emerging Participant Partner (Receiving) Regions							
2015							
Region	# 2015	# 2020	% change				
CH06	6	26	333%				
R011	9	36	300%				
HR03	7	19	171%				
ITH1	6	16	167%				
NL13	6	16	167%				
RO21	9	23	156%				
PT30	6	14	133%				
ES23	8	18	125%				
FRC2	8	18	125%				
ITF3	41	92	124%				

Analysis of the results. Regional level (European Capital Regions):

- Large capitals are top performers and have been evolving in line with overall H2020 trends
- Strongest regions have decreased and increased more sharply (Paris and Madrid) than general.
- Athens has grown unaffected by the general changes in H2020 project numbers.
- London has decreased continuously between 2015 and 2020, both as sender and receiver.

Results

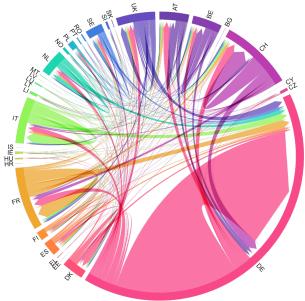
13. Interregional Flows of Knowledge: Patent citations

- Country-to-country matrixes (c2c)
- Region-to-region matrixes (r2r)

Results. Knowledge: Patent citations

Results at country level (NUTS 0)

- Patent citations country-to-country matrixes
- Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
- Temporal scope: 2010 to 2018
- Source: OECD-PATSTAT-REGPAT.
- Data features:
 - 32 X 32 OD matrixes for each year
 - Variable under consideration: patent citations

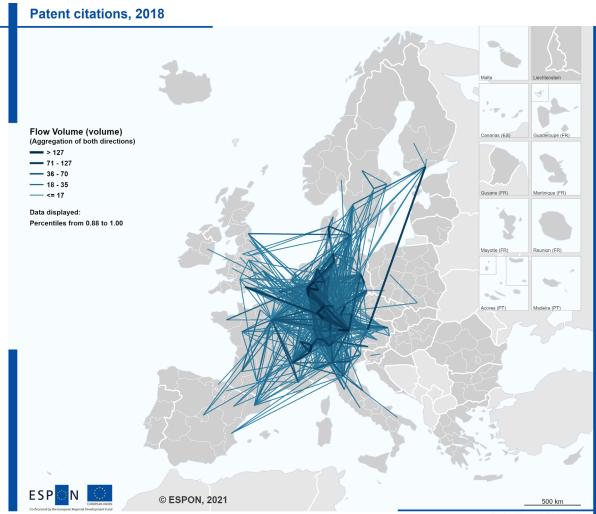


> 1.161 volume

687 - 1,161 volume

686 volume

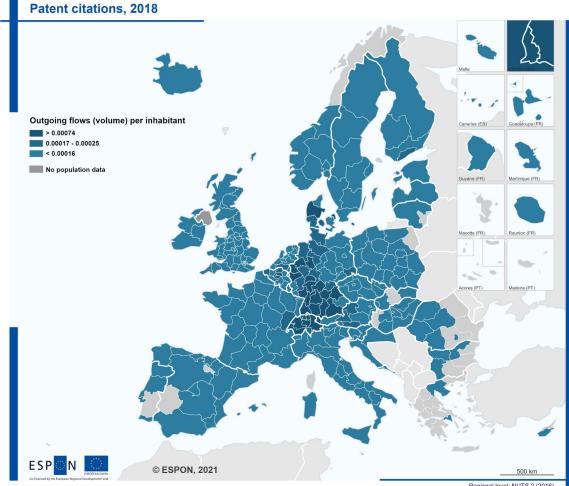
Patent citations. 2018


Results. Knowledge: Patent citations

Results at R2R level (NUTS 2)

- Patent citations R2R matrixes
- Spatial extent: EU27 + UK + Norway, Lichtenstein, Iceland and Switzerland
- Temporal scope: 2010 to 2018
- Source: OECD-PATSTAT-REGPAT.
- Data features:

- 329 X 329 OD matrixes for each year
- Variable under consideration: patent citations


Regional level: NUTS 2 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: CEPREDE, 2021 © EuroGeographics for the administrative boundaries

Results. Knowledge: Patent citations

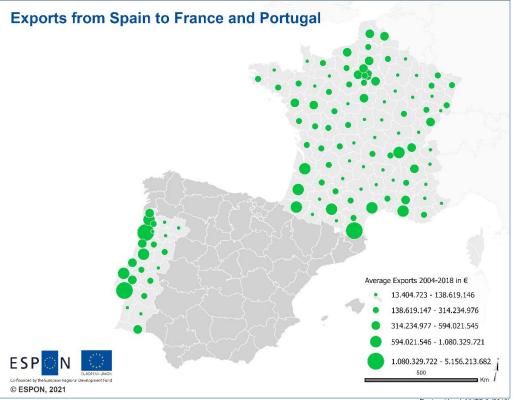
Patent citations, 2018

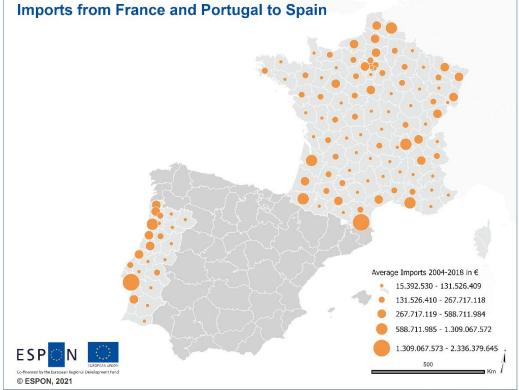
4

· · · · · · · · · · · · · · · · · · ·	
	Flow Volume > 238 volume 133 - 238 volume 50 - 132 volume 13 - 49 volume <
naide an i an	9
1997年,1998年,1999年,1999年,1999年,1999年	
	. E
- ANDER ANDER - ANDER AND ANDER AND	
For and the support of a support of the support of the support of the support of the support of the support of the support of the support of the support	-
(1) A set of the se	
	1
[14] S. W. M.	•
[1] Martin Martin Martin Schultz and Charles and Schultz and Martin Martin Schultz and Schu Schultz and Schultz	
	2
	· .
	1
	-
[1] · · · · · · · · · · · · · · · · · · ·	÷-
	.÷
■ Money State	' н ,

Regional level: NUTS 2 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: CEPREDE, 2021 © EuroGeographics for the administrative boundaries

134 ESPON // Interregional Relations in Europe

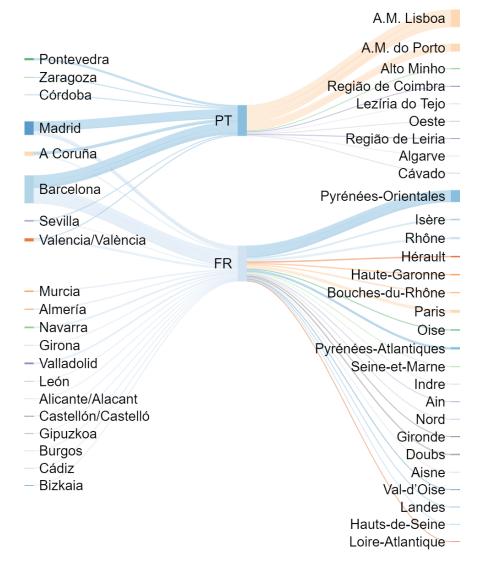



Results: Case studies

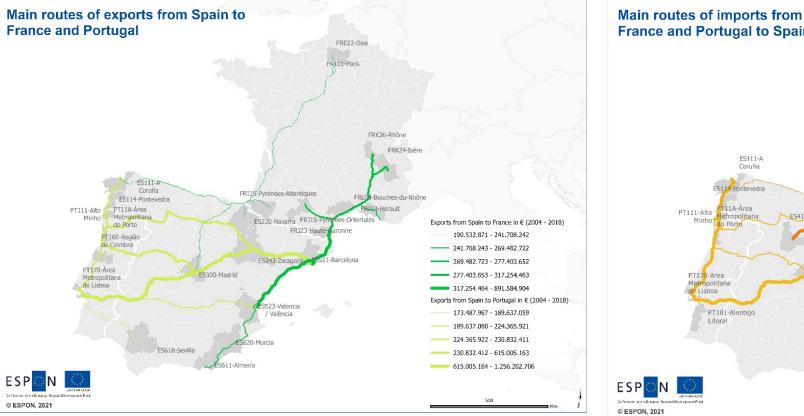
1. Interregional trade of goods between Spain, France and Portugal (NUTS 3 level; 2004 – 2018)

Case Studies:

Interregional trade of goods between Spain France and Portugal (Nuts 3; 2004-2018).


Regional level: NUTS 3 (2016) Source: ESPON IRIE, 2021 Origin of data: CEPREDE - C-intereg, 2021 UMS RIATE for administrative boundaries

Regional level: NUTS 3 (2016) Source: ESPON IRIE, 2021 Origin of data: CEPREDE - C-intereg, 2021 UMS RIATE for administrative boundaries


4

T.1.6. Case Studies: Interregional trade of goods between Spain France and Portugal (Nuts 3; 2004-2018).

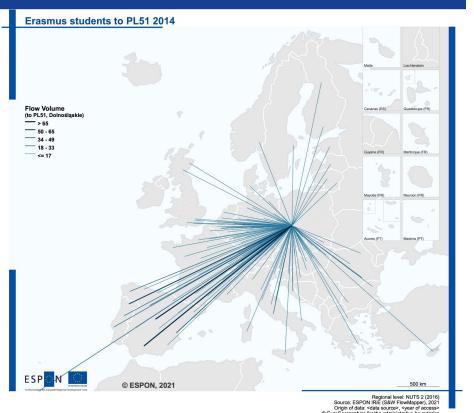
Top-50 Spanish exports to France and Portugal (NUTS 3). Average flows for the period 2004-2018. In Euros.

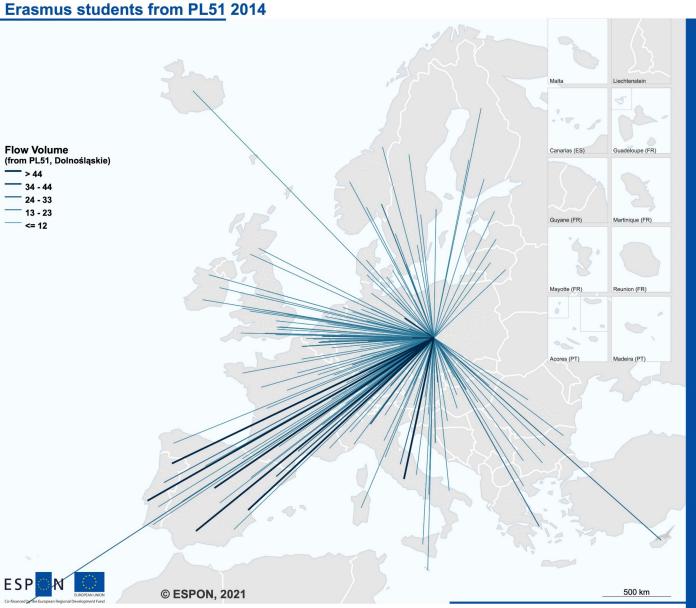
T.1.6. Case Studies: Interregional trade of goods between Spain France and Portugal (Nuts 3; 2004-2018).

Regional level: NUTS 3 (2016) Source: ESPON IRIE, 2021 Origin of data: CEPREDE - C-intereg, 2021 UMS RIATE for administrative boundaries

Regional level: NUTS 3 (2016) Source: ESPON IRIE, 2021 Origin of data: CEPREDE - C-Intereg, 2021 UMS RIATE for administrative boundaries

T.1.6. Case Studies: Interregional trade of goods between Spain France and Portugal (Nuts 3; 2004-2018).


Augmented gravity equation for inter-national exports from Spain to France and Portugal. NUTS 3 level. PPML. Period: 2004 – 2018.


 $\begin{aligned} \mathrm{T}_{ijt} &= \beta_0 + \beta_1 \mathrm{Capital}_i + \beta_2 \mathrm{Capital}_j + \\ \beta_3 \log(D_{ij}) + \\ \beta_4 \mathrm{Home} \ \mathrm{Bias-es-p}t_{ij} + \beta_5 \mathrm{Home} \ \mathrm{Bias-es-f}r_{ij} + \\ \beta_6 \mathrm{contig}_{ij} + \beta_7 \mathrm{mountain}_i + \beta_8 \mathrm{mountain}_j + \\ \beta_9 \mathrm{coastal}_i + \beta_{10} \mathrm{coastal}_j + \mu_i + \mu_j + \mu_t + \varepsilon_{ijt} \end{aligned}$

	(1)	(2)	(3)	(4)	(5)
Capital _i	1.938***	1.964***	2.266***	3.023***	3.096***
	(0.308)	(0.307)	(0.293)	(0.318)	(0.324)
Capital _j	2.544***	2.573***	2.617***	2.399***	2.382***
,	(0.284)	(0.284)	(0.280)	(0.253)	(0.261)
log(D _{ii})	-0.997***	-0.980***	-0.976***	-0.960***	
	(0.0953)	(0.0934)	(0.0966)	(0.0958)	
D _{ii}					-2.731***
					(0.368)
D _{ij} ²					0.879***
					(0.184)
intern-contig _{ij}	-0.0349				
	(0.344)				
intern-contig-es-pt _{ij}		1.035***	1.317***	1.336***	1.907***
		(0.208)	(0.217)	(0.216)	(0.208)
intern-contig-es-fr _{ij}		-0.314	-0.358	-0.352	-0.0797
		(0.357)	(0.345)	(0.343)	(0.329)
border-es-pt _i			-0.502**	-0.293	-0.256
			(0.200)	(0.211)	(0.214)
border-es-fr _i			1.298***	1.158***	1.215***
			(0.203)	(0.204)	(0.212)
border-pt _j			-1.287***	-1.094***	-1.077***
h a val a v fo			(0.208)	(0.205)	(0.210)
border-fr _j			0.728***	0.752***	0.753***
			(0.272)	(0.274)	(0.275)
mountain _i				0.240	0.292
				(0.198)	(0.198)
mountain _j				-0.298	-0.277
coastal				(0.203) 1.075***	(0.201) 1.075***
coastal _i				(0.147)	(0.144)
coastal _i				0.688***	0.730***
				(0.163)	(0.162)
Constant	8.213***	8.185***	7.929***	6.929***	8.642***
	(0.0979)	(0.0975)	(0.0963)	(0.231)	(0.330)
Observations	82,391	82,391	82,391	82,391	82,391
R-squared	0.597	0.615	0.621	0.625	0.616

The interregional flows of students in the EU: attractors and barriers

T.1.6. Case Studies.

Regional level: NUTS 2 (2016) Source: ESPON IRIE (S&W FlowMapper), 2021 Origin of data: <data source>, <year of access> © EuroGeographics for the administrative boundaries

Co-financed by the European Regional Development Fund

Inspire Policy Making with Territorial Evidence

// Thank you

This presentation is available at: https://www.espon.eu/programme/projects/espon-

2020/applied-research/interregional-relations-europe