

ESPON Big Data for Territorial
Analysis and Housing Dynamics

Wellbeing of European citizens regarding
the affordability of housing.

Monitoring and tools

Technical Guidance Document

Final Report

This monitoring and tools activity is conducted within the framework of the ESPON 2020 Cooperation

Programme.

The ESPON EGTC is the Single Beneficiary of the ESPON 2020 Cooperation Programme. The Single

Operation within the programme is implemented by the ESPON EGTC and co-financed by the European

Regional Development Fund, the EU Member States and the Partner States, Iceland, Liechtenstein,

Norway and Switzerland.

This delivery does not necessarily reflect the opinion of the members of the ESPON 2020 Monitoring

Committee.

Authors

Renaud Le Goix, Université de Paris - UMS RIATE – CNRS Paris 75013 (France) – Project coordinator

Ronan Ysebaert, Université de Paris - UMS RIATE – CNRS (France) – Project manager

Timothée Giraud, CNRS, UMS RIATE – Université de Paris (France)

Marc Lieury, UMS RIATE – CNRS, University Paris 1 Panthéon-Sorbonne (France)

Guilhem Boulay, University of Avignon (France)

Thomas Louail, Géographie-cités (France)

José Ravier Ramasco, FISC-CSIC (Spain)

Mattia Mazzoli, FISC-CSIC (Spain)

Pere Colet, FISC-CSIC (Spain)

Thierry Teurillat, Haute-Ecole Arc (Switzerland)

Alain Segessemann, Haute-Ecole Arc (Switzerland)

Szymon Marcinczak, University Lodz (Poland)

Bartosz Bartosiewicz, Univeristy Lodz (Poland)

Elisabete Silva, Cambridge University (UK)

Sølve Baerug, Norwegian University of Life Sciences (Norway)

Terje Holsen, Norwegian University of Life Sciences (Norway)

Advisory Group

ESPON EGTC: Marjan Van Herwijnen (project expert), Caroline Clause (financial expert)

Information on ESPON and its projects can be found on www.espon.eu.

The web site provides the possibility to download and examine the most recent documents produced by

finalised and ongoing ESPON projects.

© ESPON, 2019

Printing, reproduction or quotation is authorised provided the source is acknowledged and a copy is

forwarded to the ESPON EGTC in Luxembourg.

Contact: info@espon.eu

ISBN: 978-99959-55-99-1

https://www.espon.eu/
mailto:info@espon.eu

Final Report

ESPON Big Data for Territorial
Analysis and Housing Dynamics

Wellbeing of European citizens regarding

the affordability of housing.

Technical Guidance Document
 12/11/2019

ESPON Big Data for Territorial Analysis and Housing Dynamics / Guidance document

i

Table of contents

1 Introduction .. 1

2 Outlines of the conceptual and theoretical model ... 3

2.1 Theoretical model .. 3

2.2 Harmonizing conventional and unconventional data to analyze the well-being 3

3 Technical section: case-study analysis ... 5

3.1 Transferability and reproducibility of the study: a narrative of a case-study analysis
(Paris) .. 5

3.2 Conventional institutional data: Eurostat and National Statistical Institutes indicators 8

3.3 Using unconventional institutional data to analyze the dynamics on property markets:
data, methods, sample results .. 10

3.3.1 Unconventional institutional data: data from Paris Chamber of the Notaries 10

3.3.2 Data aggregation in grid and LAU2 level .. 12

3.4 Using unconventional data sources: web-scraping of real-estate online listings 15

3.5 Harmonised indicators (FUA and LAU2 scale) ... 18

3.5.1 FUA indicators ... 19

3.5.2 LAU2 harmonized indicators ... 22

3.5.3 Mapping LAU2 harmonised indicators .. 23

3.6 Grid data and interpolation – spatial harmonisation issue to obtain a global and accurate
picture of the real-estate market locally .. 25

3.7 Comparing real-estate values to other big data sources (Airbnb) 28

4 Summary of methodological and conceptual outputs. Next steps for further studies. 33

ESPON Big Data for Territorial Analysis and Housing Dynamics / Guidance document

ii

List of Maps

Map 3-1 Two resulting maps created with the R CODE 6 .. 25

Map 3-2 Average advertised price at 1 km grid level – raw map 26

Map 3-3 Average advertised price at 1 km grid level – smoothed map (span = 2000m,

Pareto function, beta = 2) ... 28

List of Figures

Figure 3.1 - Overview of the workflow. .. 6
Figure 3.2 - Data output : aggregation of relevant indicators at LAU2 and grid level

for 10 case-studies (extract). .. 15

Figure 3.3 - Get links to all ads of a given real estate Website 16
Figure 3.4 - Collect and sparse geospatial information ... 17
Figure 3.5 – From basic indicators (transaction, web-scraped and institutional data) to

harmonised indicators at LAU2 scale .. 23

Figure 3.6 – Comparing Airbnb and real-estate transactions (Paris). Density of Airbnb

offer (a.) compared to the density of transactions on apartment property markets (b.).

Residuals (c) of the linear regression (d). .. 29
Figure 3.7 – Comparing Airbnb and real-estate offer (Barcelona) 30

Figure 4.8 – Variogram of advertised price of real-estate property prices (euros/sq.

kilometer) in Barcelona according to distance ... 36
Figure 4.9 – Average real-estate transaction prices (euros per square meters) in Paris

interpolated at several geographical scales (span parameter = 1000m, 2000m, 5000m

and 10000m) .. 37

List of Tables

Table 3-1 – Listing of Eurostat available indicators relevant for characterising the

housing market ... 9
Table 3-2 – Harmonised indicators created at FUA scale (real estate offer) displaying

synthetic indicators at FUA scale .. 19

Abbreviations

ESPON
ESPON EGTC

European Territorial Observatory Network
ESPON European Grouping of Territorial Cooperation

EU European Union
LAU
FUA
IDS
OECD
TOR

Local Administrative Unit
Functional Urban Area
Internet Data Sources
Organisation for Economic Co-operation and Development
Terms of reference

ESPON Big Data for Territorial Analysis and Housing Dynamics / Guidance document

iii

 1

1 Introduction

This technical guidance document describes and demonstrates the methodological

framework applied to produce the ESPON EGTC Big Data for Territorial Analysis of Housing

Dynamics 2018-19 study, delivered as the Wellbeing of European citizens regarding the

affordability of housing report.

While in European larger cities, decent and affordable housing is increasingly hard to get

access to, the main goals of the study were:

(1) to set up the framework towards the production of neighborhood and local spatial

data;

(2) to implement the framework with harmonized indicators, to examine the unequal

spatial patterns of housing affordability in Europe;

(3) to do it in a way that allows to compare between cities and within cities.

Its policy-oriented broader thinking is to analyze the spatial patterns of unequal local

affordability, as framed by the Action Plan of the Partnership on Housing of the EU Urban

Agenda that pushes for improved knowledge regarding affordability of housing.

The report addresses the housing elements of European policies through one major

issue: affordability, a concept defined as a gap between housing prices and households’

income (Friggit, 2017), and this gap has widened during the last decades. Since the 1990s,

housing prices have on average increased faster than the income of residents and buyers in

major post-industrial city-regions, but this is not ubiquitous. The scientific and policy goals of

the study aim at informing and locally mapping the increased affordability gap, a critical issue

for social cohesion and sustainability in metropolitan areas in Europe that impacts the well-

being of residents in European cities. To do so, the guidance document aims at

discussing the data collection and data models used for the production of the

delivered maps and data:

• The “Wellbeing of European citizens regarding the affordability of housing” datasets

have been produced to analyse and map affordability in a selection of European

cities.

• The report combines institutional data, and data harvested on real-estate

advertisement websites. The issues with collecting and harmonizing such

heterogeneous data sources (conventional and unconventional data) are discussed,

as well as the methodology proposed to bridge such datasets.

• The datasets delivered are structured as spatial data with harmonized indicators that

allow to compare between cities and within cities, to examine the unequal

spatial patterns of housing affordability.

 2

• From the harmonized database, the study focuses on 9 case studies that cover a

range of cities: from global and capital cities, down to medium-sized cities. Case

studies offer a variegated sample, with several dynamics regarding housing market

(gentrification process, tourism presence, housing crisis, etc.). Highlighting these

various and complementary situations is relevant to carry out a first international and

comparative study on housing dynamics in Europe based on local indicators. This

guidance document will highlight the technical choices made to compare the

indicators between cities in different countries.

The guidance document describes the data selection, harvesting and analysis process. It is

structured as follows:

- Section 2 overviews the conceptual and theoretical model used for standardisation

and delivery of aggregated datasets, as well as data sources gathered, and described

in the wellbeing report.

- Section 3 describes the data model and provides a description of the data collection

and harmonisation processes. It discusses the technical choices and procedures for

data harvesting, as well as the procedures for data harmonisation. This section gives

insights on how results are technically produced and delivered, by the means of a

workable example, elaborated with the Paris case study. This section of the

guidance document is structured according to the workflow of the analysis, and

narratively describes methods and R code used to implement the case study, in order

to provide ESPON, stakeholders and policymakers with the conditions of

reproducibility and transferability of the methodology used.1

- Section 4 summarizes methodological and conceptual outputs and elaborate on next

steps for further studies.

- Several appendices complement the Technical Guidance Document, and are made

available with the final delivery, for the sake of reproducibility and transferability: they

include (1) an annex on harvesting data, with Python language libraries; (2) full

code for the preparation of case-studies (R language), (3) a workable smaller

example to demonstrate the diverse procedures used (RMarkdown html document)

developed as a prototype demonstrator of the libraries and packages used for the

project.2

1 Most programs used to prepare this report have been written in the R language, using a series of
packages that are documented in the Guidance document. R language is now a widely adopted open-
sourced standard programming language in spatial analysis, big data analysis, and statistics. Harvesting
websites also required the use of Python language (see Annex 1)

2 Full code in the R language is provided as used in data and spatial analysis (http://bit.ly/2XGEhiD).
Readers may also refer to an .html file, a RMarkdown document consisting in an archive of preliminary
stages of the project developments (D1_Draft_outline_guidance_document.html). This file was
constructed as a workable prototype example of the main packages used to produce analyse the
datasets and harvest data.

http://bit.ly/2XGEhiD

 3

2 Outlines of the conceptual and theoretical model

Starting with an explicit theoretical framework of affordability, the design of a harmonised data

structure is not an easy process and must follow specific methods and procedures. One issue

consists in defining an adapted methodology for combining conventional and unconventional

data sources. Another is to describe harmonisation procedures, which are not only technical,

but also conceptual. This section summarises some conceptual and theoretical elements that

are further elaborated in the Wellbeing Report, so as to introduce the technical choices of the

final data design.

2.1 Theoretical model

The theoretical model underlying the study starts with the problem of home values and market

values, and the widening gap compared to income (Aalbers, 2016; Friggit, 2017). The

theoretical framework from which we elaborate on stems an overarching conceptualisation of

affordability as part of a feedback loop between residential markets, value, assets,

wealth and vulnerability, thoroughly developed in Le Goix et al. (2019a); Le Goix et al.

(2019b). This theoretical framework is detailed in the Wellbeing report, section 1.2 and 1.3.

The report describes to effort towards collecting, documenting (metadata) local spatial

datasets to spatially analyse some critical issues:

- The increased affordability gap, a critical issue for social cohesion sustainability in

metropolitan areas in Europe.

- The unequal access to housing markets.

- The increased inequalities stemming from declining affordability (i.e. higher price to

income ratio)

2.2 Harmonizing conventional and unconventional data to analyze the
well-being

One major issue is the lack of harmonised spatial data to map and monitor affordability

in Europe. There are plenty of institutional (tax, census), private (real-estate agents and

websites) and national or local data (parcels, local tax rolls). These are not harmonised and

interoperable. As demonstrated in the Wellbeing report (section 2.1), data by OECD and

Eurostat are disseminated respectively at the national and at the city levels, but the dataset

are far from complete in terms of thematic and geographical objects available to accurately

analyze housing dynamics. To bridge this data gap at the local level (LAU2 and FUA), we

collected and combined different spatial datasets and surveys which have so far been

employed separately. One issue consisted in defining an adapted methodology for

combining conventional and unconventional data sources.

 4

Definition of conventional and unconventional data

(quoted from the Wellbeing report, section 3).

Conventional data are provided by traditional statistical offices. This information, usually collected at

the individual scale and disseminated at several geographical aggregates, is subject to robust

processes of harmonisation and validation, by means of explicit conceptualisation of the future usage of

the data collected. Conventional data are usually realised through vintages (like censuses), but rely on

robust survey, samples and inferential statistics methodologies. Such data are disseminated with explicit

description of the fields and variable construction, definitions, sampling procedures, and statistical

robustness.

Unconventional data are extracted from various platforms and sources, and are often named “big

data”. Some might come from institutions, and are datasets collected for various administrative, fiscal

reasons, but that were not originally designed for socio-economic or demographic research. In many

ways, we incorporate them in research whereas such datasets have not been designed and/or

documented to do so (lack of metadata). Although originating from institutions, their robustness, as well

as inference on how such data describe the general population can often be questioned.

Many unconventional datasets are also derived from harvested data, made available by ISP (Internet

Service Providers) by the means of API, or scraped. Such unconventional data are often viewed as

interesting proxies to measure, and better understand spatial behaviors and territorial dynamics (Gallotti

et al.; Kitchin, 2013), and also as a means of providing higher spatio-temporal resolution data when

compared to institutional data sources (FP7 EUNOIA final report, 2015).

 5

3 Technical section: case-study analysis

For the purpose of the Wellbeing of European citizens regarding the affordability of housing

report we go beyond the aggregated territorial levels to understand intra-urban inequalities

between the cities. In term of data creation processing, three challenges have been

addressed in this research:

(1) Ensuring a data process which can be reproducible and transferable. It was mainly

done through and important documentation and programming codes.

(2) Delivering comparable and harmonised indicators for the selected cities and case

studies, 2 geographical levels are used to aggregate the collected data: the LAU2

level, and the 1km European reference grid.

(3) Covering the entire Functional Urban Areas, despite missing data and incomplete

datasets (mainly due to the absence of real-estate transactions or offers in the

periphery of FUA, which are mainly rural areas).

This section describes and demonstrates how we address each of these challenges, the

technical solutions implemented, and the data analysis design. All code for the study is made

available with the final delivery of the report. See “Programs” folder, containing R files,

delivered as a report appendix3. The “Appendices” section of this document contains Python

code used for scraping purposes in France.

3.1 Transferability and reproducibility of the study: a narrative of a
case-study analysis (Paris)

We elaborate on the case-study of Paris as an ideal case study because of the availability of

institutional data4. We consider a variety of datasets:

- public conventional census data,

- unconventional institutional datasets, property-level data from the Paris Chamber of

Notaries (1996-2012, a sample of 1 million rows),

- unconventional harvested big data sources (real estate websites).

3 https://sharedocs.huma-num.fr/wl/?id=LPBWZm39VsZpXWnqIi9Q9HiTu0p5j9cF

4 The final guidance document describes the full methodology as a narrative summarizing the

data process and R code used from a complete case study. It differs from interim deliveries, that were

based on a prototype analysis designed as a RMarkdown document (Interim Delivery on Yvelines),

provided to describe and reproduce the overall workflow of analysis targeted. This interim document is

available online:

https://www.espon.eu/sites/default/files/attachments/Guidance_Document_201900426.pdf

 6

Harmonised and standardised variables are proposed, down to the local level (1 km grid).

Methods are applied to a set of geospatial data available. Section 3.3 documents the R

language code written for the purpose of the analysis: the goal is to demonstrate the

transferability and reproducibility of the methodology. The open-source R statistical

software uses open-source packages, that are well documented and maintained, and is

considered a standard environment in massive geospatial data analysis. By documenting the

R code with this narrative section, we document how the methodological framework has been

made transferable. It has been implemented with data from other case-studies to prepare

maps and visualisations for the Wellbeing report, availability of datasets permitting

(transaction data namely). In other words, all the indicators produced for each case-studies

stem from the same methodology, and are therefore made fully comparable within cities and

across cities.

Figure 3.1 - Overview of the workflow.

 7

In this section, we deliver a methodological narrative, in order:

- To describe the data collection process, both for conventional and unconventional

data sources.

- To describe and document the methodology employed to harvest datasets, using

APIs, and R packages s.a. `Cartography`, `SpatialPostion`, `rvest`, and `httr`, so as to

ensure reproducibility and transferability of the protocols.

- To describe a set of harmonised variables. Harmonised variables should be made

comparable between European cities, within cities and when data are available over

time. Ratios and standardized indices, such as affordability ratio are considered as

valuable alternatives to rough stock variables (s.a. price, surface), that are structurally

contingent to each country, city and local market contexts.

- To correct spatial and temporal data gap. Spatio-temporal information is sensitive to

two types of sampling issues: in space, and in time, therefore requiring the use of

interpolation procedures to ensure the quality and representativeness of the spatial

information produced. Spatial interpolation procedures are described, using for

instance the `Spatialposition` R Package.

To illustrate the project workflow, the narrative displayed in Chapter 3 aims at covering the

most important methodological aspects of harmonised data creation on real-estate market

(Figure 3.1) :

1. Data sources and data cleaning – A first issue highlighted is data collection from

the relevant information/data providers to target harmonized indicators. Conventional

census data are required to extract information at EU level on socio-economic

characteristics of case-studies and collect data on income, fundamental for estimating

real-estate affordability (Section 3.1). Institutional unconventional data are required to

describe residential property markets (Section 3.2). Data harvesting and web-

scraping (Section 3.3) has been critical in overcoming the situation where transaction

data simply does not exist. Where official transaction data exists, harvested data

allows to document the real-estate market offer (both property and rental market) vs.

actual transactions.

2. Harmonised indicators provision – Section 3.4 covers the design of harmonised

variables in a multiscalar perspective, produced at the local fine-grain geographical

city level (grid and LAU2) and the level of the entire FUA. Many are produced by

bridging institutional and census data.

3. Spatial harmonisation – Most of the indicators have been delivered at the LAU2

level. Section 3.5 explains the methodology and the interest to go beyond this

territorial level relevant for policy making by aggregating and interpolating the results

 8

in a 1km INSPIRE grid. This methodology offers a lot of advantages: by the means of

interpolation/smoothing techniques, we control for outliers and errors in the input

datasets. It also allows to better control for the MAUP effects (take into account the

number of real-estate offers/transactions in the calculation of price/square meters), it

estimates missing values using the assumption of spatial autocorrelation of real-

estate values. It finally allows to go beyond the LAU2 level which is basically too large

for observing existing inequalities for some cities defined by large territorial units,

such as Barcelona or Warsaw.

4. Data sources combination. Section 3.6 displays promising results for Paris and

Barcelona where some extra-combinations between unconventional data sources

have been tested for the sake of data exploration: real-estate offers (transaction

data in Paris, real-estate offer in Barcelona) and other big data source, like Airbnb.

Maps of statistical residuals produced clearly show the effect of Airbnb presence on

real-estate market (less offers than expected, all things being equal to the density of

real-estate offers or transactions) in touristic quarter (Center or Montmartre in Paris,

La Rambla in Barcelona).

This guidance document is concluded with highlights on how such data, maps and

interpretation realised have been aggregated together to produce harmonized indicators and

analysis at the three geographical levels of interest for this study, depending of data

availability: local grids, LAU2, central cities, FUAs.

3.2 Conventional institutional data: Eurostat and National Statistical
Institutes indicators

Two main categories of institutional data providers (“official statistics”) have been used:

harmonised European statistics (Eurostat) and national statistics (data coming from National

Statistical Institutes and Finance ministries).

EU statistics (Urban statistics, Eurostat) have been used to globally characterise selected

case-studies as regards to the other cities of Europe. Taking into account the availability of

data, 20 indicators at Core City and 14 at FUA level (less available information) have been

identified. These datasets include demographic indicators (age-structure), main households

characteristics, information related to the employment (economy tertiary oriented or not) and

other relevant factors to understand who lives in the cities. However, few information are

available on housing. It is only possible to extract one item of the EU perception survey: “is it

easy to find good housing in your city?”, which gives only a very rough qualitative assessment

of affordability by European citizens.

 9

Table 3-1 – Listing of Eurostat available indicators relevant for characterising the housing market

For measuring further comparable affordability indexes, the results of the EU-SILC survey

have also been used. This is the reference source for comparative statistics on income

distribution in the European Union. For this study, the first, the fifth (median) and the ninth

decile of income distribution have been gathered. This kind of information can be further (cf.

Section 3.4) used to analyse a time-normalised indicator of affordability (price to income

ratio), i.e. answering the following question: “How long the 10% poorest/median/10% richest

of the population have to work to buy/rent 1sq. kilometer in this city”? The choice of

thresholds has been made with regards to the needs for data standardisation to compare

national affordability between cities of several countries, which is not the case with income

statistics provided at local level by National Statistical Institutes.

In fact, LAU2 income data have also been gathered. It is especially useful for discussing on

affordability in a local context. A disclaimer shall however be disclosed regarding income

data. It is not recommended to compare local situation of affordability between cities of

several countries. Indeed, the methodologies for income computation varies from one country

to another. The ways income is imputed to persons or households differ between countries:

per capita or per households; before/after tax; with or without social benefits, etc. The

statistical parameters for aggregated income also differs in institutional data, some a median,

other are average income at LAU2 level. Nevertheless, local affordability indexes are still

highly relevant for comparing local affordability between cities of the same country (Avignon-

Paris / Madrid, Barcelona-Palma de Mallorca / or Lodz-Warsaw-Krakow separately), the

methodology of income calculation being generally harmonised at national level.

 10

3.3 Using unconventional institutional data to analyze the dynamics on
property markets: data, methods, sample results

3.3.1 Unconventional institutional data: data from Paris Chamber of the Notaries

We use property-level data from the Paris Chamber of Notaries (1996-2012), provided to the

lead researcher by the Paris Notaries Services, a subsidiary of the Chamber of the Notaries,

under a research agreement with the Paris Chamber of the Notaries5. This sample contains

transactions for the region and its suburbs, within the administrative limits of Ile-de-France

(roughly 1 million rows). All records contain information on the property amenities and pricing,

and series of understudied interesting variable on sellers and buyers, such as age, sex, socio-

economic status, national origin, place of residence, and some credit history related to the

transaction (95 indicators at transaction scale, cf R CODE 1).

###################### R CODE 1 #######################
#Import BIEN database (Chamber of Notaries) and analyse
dfdata <- read.csv("BIEN_LABEX_2016_consolidated_all_years.txt", stringsAsFactors=FALSE)
> str(dfdata)
'data.frame': 968695 obs. of 96 variables:
 $ X.1 : int 1 2 3 4 5 6 7 8 9 10 ...
 $ ID : int 1 2 3 4 5 6 7 8 9 10 ...
 $ ACONST : int NA NA NA 1996 1996 1996 1996 1996 1996 1996 ...
 $ ANNAIS_AC : int 1966 1967 1969 1961 1971 1945 1970 1937 1970 1973 ...
 $ ANNAIS_VE : int NA NA NA NA NA NA NA NA NA NA ...
 $ annee : int 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 ...
 $ ANNEXE : chr "" "" "" "" ...
 $ BATEAU : chr "" "" "" "" ...
 $ BIARRON : chr "" "" "" "" ...
 $ BICOMPADR : chr "ET 12" "ET 12" "ET 12" "zac des 2 golfs" ...
 $ BICOMPNRVO : chr "" "" "" "" ...
 $ BIDEPT : chr "77" "77" "77" "77" ...
 $ BILIBVOIEO : chr "PAUL VALENTIN" "PAUL VALENTIN" "PAUL VALENTIN" "CHAMP DE LAGNY" ...
 $ BINRQUARAD : chr "" "" "" "" ...
 $ BINRVOIE : chr "10" "10" "10" NA ...
 $ BINUCOM : chr "5" "5" "5" "18" ...
 $ BITYPVOIE : chr "RUE" "RUE" "RUE" "LD" ...
 $ CAVE : chr "1" "0" "1" NA ...
 $ CODNAT_AC : chr "F" "F" "F" "F" ...
 $ CODNAT_VE : chr "F" "F" "F" "F" ...
 $ CSP_AC : chr "60" "60" "60" "51" ...
 $ CSP_VE : chr "" "" "" "" ...
 $ DATDEBBAIL : chr "" "" "" "" ...
 $ DATMUTPREC : chr "26/01/1995 00:00" "26/01/1995 00:00" "26/01/1995 00:00" "02/11/1995 00:00" ...
 $ DEPENDANCE : chr "" "" "" "" ...
 $ DURBAIL : chr NA NA NA NA ...
 $ ENCOMBRE : chr NA NA NA NA ...
 $ ETAGE : chr "2" "2" "0" "2" ...
 $ IMSURFTOTB : chr NA NA NA NA ...
 $ INDIVI_AC : chr "N" "I" "N" "N" ...
 $ INDIVI_VE : chr "N" "N" "N" "N" ...
 $ insee : chr "77005" "77005" "77005" "77018" ...
 $ IRIS : chr "770050000" "770050000" "770050000" NA ...
 $ LARGFAC : chr NA NA NA NA ...
 $ LOYANNU : chr NA NA NA NA ...
 $ mois : int 6 5 7 3 3 3 3 3 3 3 ...
 $ MTCRED : chr "59455" "63022" "51070" "74395" ...
 $ NATNEGOC : chr "PR" "PR" "PR" "" ...
 $ NBRBAT : chr NA NA NA NA ...
 $ NBRCHSERV : chr "0" "0" "0" NA ...
 $ NBRGARAGE : chr "0" "0" "0" "1" ...
 $ NBRPIECE : chr "3" "3" "" "3" ...
 $ NBRSALDB : int 1 NA NA 1 1 1 1 1 1 1 ...
 $ NIVEAU : chr NA NA NA NA ...
 $ Nom_commune: chr "Annet-sur-Marne" "Annet-sur-Marne" "Annet-sur-Marne" "Bailly-Romainvilliers" ...
 $ NRPLAN1 : chr "426" "426" "426" "106" ...
 $ NUMCOM_AC : chr "5" "294" "438" "81" ...
 $ NUMCOM_VE : chr "372" "372" "372" "512" ...
 $ PADEPT_AC : chr "77" "77" "77" "94" ...
 $ PADEPT_VE : chr "77" "77" "77" "59" ...
 $ PISCINE : chr "" "" "" "" ...
 $ PRESCREDIT : chr "O" "O" "O" "O" ...
 $ PXMUTPREC : chr "" "" "" "" ...
 $ QUALITE_AC : chr "" "" "" "" ...
 $ QUALITE_VE : chr "PR" "PR" "PR" "SC" ...
 $ REFSECTION : chr "B" "B" "B" "AD" ...
 $ REQ_AF_AC : chr "RP" "" "" "" ...
 $ REQ_AF_VE : chr "" "" "" "" ...
 $ REQ_ANC : chr "1" "1" "1" "2" ...
 $ REQ_ASCENC : chr "" "" "" "N" ...
 $ REQ_CHAUFC : chr "" "" "" "" ...

5 The transactions BIEN proprietary database was made available by Paris Notaire Service, on the behalf of

the Chamber of the Notaries, under an agreement contracted by the LabEx DynamiTe (ANR-11-LABX-0046) and the
Univ. Paris 1 Pantheon-Sorbonne.

 11

 $ REQ_COS : chr "0" "0" "0" "0" ...
 $ REQ_DUREE : chr "17" "16" "18" "4" ...
 $ REQ_EPOQU : chr "B" "B" "B" "G" ...
 $ REQ_JARDIN : chr "" "" "N" "" ...
 $ REQ_MUT : chr "1" "1" "1" "1" ...
 $ REQ_NIVGAR : chr NA NA NA NA ...
 $ REQ_OCC : chr "1" "4" "3" "3" ...
 $ REQ_PM2 : num 945 NA NA 1593 1383 ...
 $ REQ_POS : chr "" "" "" "" ...
 $ REQ_PRIX : chr "47259" "50308" "51070" "89182.49" ...
 $ REQ_SURFT : chr "0" "0" "0" "0" ...
 $ REQ_VALUE : chr NA NA NA NA ...
 $ REQTYPBIEN : chr "AP" "AP" "AP" "AP" ...
 $ SDHOP : chr NA NA NA NA ...
 $ SEXE_AC : chr "M" "M" "M" "M" ...
 $ SEXE_VE : chr "" "" "" "" ...
 $ SHON : chr NA NA NA NA ...
 $ SITMAT_AC : chr "M" "C" "M" "M" ...
 $ SITMAT_VE : chr "" "" "" "" ...
 $ SURFHABDEC : chr "50" NA NA "56" ...
 $ TAUXTVA : chr "A" "A" "A" "H" ...
 $ TAXPF : chr "N" "N" "N" "O" ...
 $ TENNIS : chr "" "" "" "" ...
 $ TERRASSE : chr "N" "N" "N" "N" ...
 $ TXDRMUT1 : chr "3" "3" "3" "0" ...
 $ TYPAP : chr "AS" "AS" "DU" "AS" ...
 $ TYPBAIL : chr "" "AU" "" "" ...
 $ TYPGAR : chr NA NA NA NA ...
 $ TYPMAI : chr "" "" "" "" ...
 $ TYPMUTPREC : chr "A" "" "A" "A" ...
 $ TYPPRO : chr "P" "P" "P" "P" ...
 $ USAGE : chr "HA" "HA" "HA" "HA" ...
 $ VIABILISAT : chr NA NA NA NA ...
 $ X : chr "628337" "628337" "628337" "0" ...
 $ Y : chr "2436285" "2436285" "2436285" "0" ...

The dataset is then filtered and a subset is prepared (ordinary transactions, residential only,

apartments only, without null geographical coordinates, for 2011 and 2012), that represents

90000 observations. Nevertheless, some outliers may appear in the sample, due to data entry

mistakes, which is a manual process for notaries in France). A first data cleaning consists in

excluding to the sample exceptional values (1% lower and highest price/square meter

transaction values). After data cleaning and filtering, the sample is reduced down to 76000

observations (cf. R CODE 2).

###################### R CODE 2 #######################
library(dplyr)
Convert required fields in numeric
dfdata <- BIEN_LABEX
dfdata$annee <- as.numeric(dfdata$annee)
dfdata$REQ_PRIX <- as.numeric(dfdata$REQ_PM2)

Convert required fields in numeric
dfdata[,c("REQ_PRIX")] <- as.numeric(dfdata[,c("REQ_PRIX")])
dfdata <- dfdata %>%
 filter(REQ_MUT==1) %>% # ordinary transactions (OTC) btw sellers and buyers "gré à gré"
 filter(USAGE=="HA") %>% # residential only
 filter(REQ_PRIX > 1) %>% # price > 1 eur
 filter(REQTYPBIEN=="AP" | REQTYPBIEN=="A") %>% #Appartements uniquement REQTYPBIEN=="AP" |
REQTYPBIEN=="A"
 filter(X!=0) %>% filter(Y!=0) %>% # no 0 or 1 coordinates
 filter(X!=1) %>% filter(Y!=1) %>% # no 0 or 1 coordinates
 filter(annee == 2011 | annee == 2012) %>%
 filter(!is.na(X)) %>% filter(!is.na(Y)) # no NA coordinates

Prepare the data
dfdata$REQ_PRIX <- as.numeric(dfdata$prix_ttc)
dfdata$REQ_SURFT <- as.numeric(dfdata$srf_hab_est)
dfdata$NBRPIECE <- as.numeric(dfdata$nbr_pieces)
dfdata$MTCRED <- as.numeric(dfdata$mnt_cred)
dfdata$X <- as.numeric(dfdata$x)
dfdata$Y <- as.numeric(dfdata$y)
dfdata$PRIX_SURF <- dfdata$REQ_PRIX / dfdata$REQ_SURFT

 12

Delete outliers
bornesQuantiles_prix <- quantile(dfdata$PRIX_SURF, probs = seq(0,1, 0.01), na.rm=TRUE)
> bornesQuantiles_prix
 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
 200.000 1562.500 1800.000 1950.617 2062.500 2156.863 2245.895 2317.073 2385.285 2449.275 2500.000
 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%
 9309.791 9528.302 9782.609 10000.000 10370.296 10789.474 11315.789 12071.193 13444.368 45000.000

dfdata <- subset(dfdata, PRIX_SURF >= bornesQuantiles_prix[2] & PRIX_SURF <= bornesQuantiles_prix[100])

3.3.2 Data aggregation in grid and LAU2 level

The focus with transaction data being to analyse the geography of affordability through home-

ownership inequalities with transactions, several issues have to be dealt with regarding the

spatial level of aggregation. The information displayed below is aggregated at a very low

level of spatial granularity (1km grid, LAU2). On the one hand, it provides information in an

“official” territorial division, as such (LAU2). But on the other hand, these datasets are subject

to important outliers affecting the quality of the results, especially for territorial units described

by a small number of real estate transactions, requiring the use of a grid to perform

interpolation and estimation spatial statistics (1km grid).

• For spatial analysis purpose, the 1km grid allows to integrate datasets with various

spatial definitions;

• Data secrecy, privacy control and legal and/or ethic requirements regarding the

confidentiality of individual transactions ;

• The MAUP (Modifiable Areal Unit Problem), related to the spatial distribution of

transactions and aggregation ;

• The weakness of the sample and missing data issues.

• Grid interpolation (cf Section 3.6)

In concrete terms, this step (cf R CODE 3) consists in aggregating data at transaction level6 to

the LAU2 and EU 1km grid, for a set of basic targeted indicators (price, surface, rooms,

debt contracted7). To make possible further analysis, these indicators are aggregated using

several statistical parameters: first quartile (Q25), median (Q50), third quartile (Q75),

interquartile range (IQR), sum). Sum is calculated to make possible the computation of

weighted ratios from the transaction level to aggregated LAU2 and 1km grid level (price per

square meters for instance). For confidentiality issues and contract restrictions imposed by

the data provider (Paris Notaries Service, Chamber of the Notaries), grid/LAU2 cells including

less than 5 records are discarded and set to “NA” (Not Available). Finally, resulting

6 As agreed in the study contract with ESPON, it is not possible to disseminate this proprietary

disaggregated database.

7 This selection of indicators corresponds to the most basic information it is possible to

harmonize at European level. Even if the Chamber of Notaries database delivers data on socio-
economic categories of sellers/buyers, few data providers deliver this kind of data in Europe.

 13

aggregated data are merged to EU reference layers thanks to their respective ID and

exported to an Excel file. Transaction data are at this stage ready to be used for further

analysis.

###################### R CODE 3 #######################
Library(xlsx)
Reference import (LAU2 and grids)
FUA <- st_read(dsn = paste0("Mapkits/",CS,"/CommunesCS.shp"), stringsAsFactors = F)
Grid <- st_read(dsn = paste0("Mapkits/",CS,"/GridCS.shp"), stringsAsFactors = F)

################### Aggregation in Grid layer
Points location of transactions in grid cells
X-Y BIEN DB (CRS = Lambert II étendu)
dfgeom <- st_as_sf (dfdata, coords = c ("X","Y"), crs = 27572)
dfgeom <- st_transform(dfgeom,3035)
dfgeom <- st_join(dfgeom, Grid)

Aggregate targeted indicators by point grid
temp <- as.data.frame(dfgeom %>% count(GRD_ID))
colnames(temp) <- c("GRD_ID","TRANS_NUMBER")

temp1 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% summarise(PRICE_PAID_SUM = sum(REQ_PRIX, na.rm
= TRUE)))
temp2 <- as.data.frame(group_by(dfgeom, GRD_ID) %>%
 summarise(PRICE_PAID_Q25 = quantile(REQ_PRIX, probs = 0.25, na.rm = TRUE),
 PRICE_PAID_Q50 = quantile(REQ_PRIX, probs = 0.5, na.rm = TRUE),
 PRICE_PAID_Q75 = quantile(REQ_PRIX, probs = 0.75, na.rm = TRUE)))
temp2$PRICE_PAID_IQR <- temp2$PRICE_PAID_Q75 - temp2$PRICE_PAID_Q25
temp3 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% summarise(SURFACE_SUM = sum(REQ_SURFT, na.rm
= TRUE)))
temp4 <- as.data.frame(group_by(dfgeom, GRD_ID) %>%
 summarise(SURFACE_Q25 = quantile(REQ_SURFT, probs = 0.25, na.rm = TRUE),
 SURFACE_Q50 = quantile(REQ_SURFT, probs = 0.5, na.rm = TRUE),
 SURFACE_Q75 = quantile(REQ_SURFT, probs = 0.75, na.rm = TRUE)))
temp4$SURFACE_IQR <- temp2$PRICE_PAID_Q75 - temp2$PRICE_PAID_Q25
temp5 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% summarise(ROOMS_SUM = sum(NBRPIECE, na.rm =
TRUE)))
temp6 <- as.data.frame(group_by(dfgeom, GRD_ID) %>%
 summarise(ROOMS_Q25 = quantile(NBRPIECE, probs = 0.25, na.rm = TRUE),
 ROOMS_Q50 = quantile(NBRPIECE, probs = 0.5, na.rm = TRUE),
 ROOMS_Q75 = quantile(NBRPIECE, probs = 0.75, na.rm = TRUE)))
temp6$ROOMS_IQR <- temp6$ROOMS_Q75 - temp6$ROOMS_Q25
temp7 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% summarise(DEPT_SUM = sum(MTCRED, na.rm =
TRUE)))
temp8 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% summarise(DEPT_Q50 = quantile(MTCRED, probs = 0.5,
na.rm = TRUE)))
temp9 <- as.data.frame(group_by(dfgeom, GRD_ID) %>%
 summarise(PRICESURF_Q25 = quantile(PRIX_SURF, probs = 0.25, na.rm = TRUE),
 PRICESURF_Q50 = quantile(PRIX_SURF, probs = 0.5, na.rm = TRUE),
 PRICESURF_Q75 = quantile(PRIX_SURF, probs = 0.75, na.rm = TRUE)))
temp9$PRICESURF_IQR <- temp9$PRICESURF_Q75 - temp9$PRICESURF_Q25
transactions <- cbind(temp,temp1, temp2,temp3,temp4,temp5, temp6, temp7, temp8, temp9)

GRIDdata <- Grid[,c("GRD_ID")]

Merge with EU reference layer
GRIDdata <- merge(GRIDdata,
 transactions[,c("GRD_ID", "TRANS_NUMBER", "PRICE_PAID_SUM",
 "PRICE_PAID_Q25","PRICE_PAID_Q50","PRICE_PAID_Q75",
 "PRICE_PAID_IQR","SURFACE_SUM","SURFACE_Q25","SURFACE_Q50",
 "SURFACE_Q75","SURFACE_IQR","PRICESURF_Q25","PRICESURF_Q50",
 "PRICESURF_Q75","ROOMS_SUM","ROOMS_Q25","ROOMS_Q50","ROOMS_Q75",
 "ROOMS_IQR","DEPT_SUM","DEPT_Q50")], by.x = "GRD_ID", by.y = "GRD_ID", all.x =
TRUE)

st_geometry(GRIDdata) <- NULL

Export in XLS
write.xlsx(as.data.frame(GRIDdata), file = "TRANSACTIONS_PARIS.xls", sheetName = "grid",

 14

 col.names = TRUE, append = TRUE, row.names = FALSE, showNA = FALSE)

################### Aggregation LAU2 level
temp <- as.data.frame(dfdata %>% count(insee))
colnames(temp) <- c("insee","TRANS_NUMBER")

temp1 <- as.data.frame(group_by(dfdata, insee) %>% summarise(PRICE_PAID_SUM = sum(REQ_PRIX, na.rm =
TRUE)))
temp2 <- as.data.frame(group_by(dfdata, insee) %>%
 summarise(PRICE_PAID_Q25 = quantile(REQ_PRIX, probs = 0.25, na.rm = TRUE),
 PRICE_PAID_Q50 = quantile(REQ_PRIX, probs = 0.5, na.rm = TRUE),
 PRICE_PAID_Q75 = quantile(REQ_PRIX, probs = 0.75, na.rm = TRUE)))
temp2$PRICE_PAID_IQR <- temp2$PRICE_PAID_Q75 - temp2$PRICE_PAID_Q25
temp3 <- as.data.frame(group_by(dfdata, insee) %>% summarise(SURFACE_SUM = sum(REQ_SURFT, na.rm =
TRUE)))
temp4 <- as.data.frame(group_by(dfdata, insee) %>%
 summarise(SURFACE_Q25 = quantile(REQ_SURFT, probs = 0.25, na.rm = TRUE),
 SURFACE_Q50 = quantile(REQ_SURFT, probs = 0.5, na.rm = TRUE),
 SURFACE_Q75 = quantile(REQ_SURFT, probs = 0.75, na.rm = TRUE)))
temp4$SURFACE_IQR <- temp2$PRICE_PAID_Q75 - temp2$PRICE_PAID_Q25
temp5 <- as.data.frame(group_by(dfdata, insee) %>% summarise(ROOMS_SUM = sum(NBRPIECE, na.rm =
TRUE)))
temp6 <- as.data.frame(group_by(dfdata, insee) %>%
 summarise(ROOMS_Q25 = quantile(NBRPIECE, probs = 0.25, na.rm = TRUE),
 ROOMS_Q50 = quantile(NBRPIECE, probs = 0.5, na.rm = TRUE),
 ROOMS_Q75 = quantile(NBRPIECE, probs = 0.75, na.rm = TRUE)))
temp6$ROOMS_IQR <- temp6$ROOMS_Q75 - temp6$ROOMS_Q25
temp7 <- as.data.frame(group_by(dfdata, insee) %>% summarise(DEPT_SUM = sum(MTCRED, na.rm = TRUE)))
temp8 <- as.data.frame(group_by(dfdata, insee) %>% summarise(DEPT_Q50 = quantile(MTCRED, probs = 0.5,
na.rm = TRUE)))
temp9 <- as.data.frame(group_by(dfdata, insee) %>%
 summarise(PRICESURF_Q25 = quantile(PRIX_SURF, probs = 0.25, na.rm = TRUE),
 PRICESURF_Q50 = quantile(PRIX_SURF, probs = 0.5, na.rm = TRUE),
 PRICESURF_Q75 = quantile(PRIX_SURF, probs = 0.75, na.rm = TRUE)))
temp9$PRICESURF_IQR <- temp9$PRICESURF_Q75 - temp9$PRICESURF_Q25

transactions <- cbind(temp,temp1, temp2,temp3,temp4,temp5, temp6, temp7, temp8, temp9)

Delete transactions number below 5 on the given period
transactions <- transactions[which(transactions$TRANS_NUMBER > 5),]

Merge income and transactions with LAU2 reference
LAU2data <- FUA[,c("CENSU","LAU2_","NAME_")]

LAU2data <- merge(LAU2data,
 transactions[,c("insee", "TRANS_NUMBER",
 "PRICE_PAID_SUM","PRICE_PAID_Q25","PRICE_PAID_Q50",
 "PRICE_PAID_Q75","PRICE_PAID_IQR","SURFACE_SUM",
 "SURFACE_Q25","SURFACE_Q50","SURFACE_Q75",
 "SURFACE_IQR","PRICESURF_Q25","PRICESURF_Q50",
 "PRICESURF_Q75", "PRICESURF_IQR", "ROOMS_SUM",
 "ROOMS_Q25","ROOMS_Q50", "ROOMS_Q75","ROOMS_IQR",
 "DEPT_SUM", "DEPT_Q50")],
 by.y = "insee", by.x = "LAU2_", all.x = TRUE)

st_geometry(LAU2data) <- NULL

Export in XLS
write.xlsx(as.data.frame(LAU2data), file = "TRANSACTIONS_PARIS.xls", sheetName = "LAU2",
 col.names = TRUE, append = TRUE, row.names = FALSE, showNA = FALSE)

 15

Figure 3.2 - Data output : aggregation of relevant indicators at LAU2 and grid level for 10 case-studies
(extract).

3.4 Using unconventional data sources: web-scraping of real-estate
online listings

Unconventional data are often viewed as interesting proxies to measure, and better

understand spatial behaviours and territorial dynamics, and also as a means of providing

higher spatiotemporal resolution data when compared to institutional data sources. Prior to

relying upon the unconventional data sources, it is important to assess their reliability, and to

assess how accurate the information provided is when compared to the long established

conventional data provision, an institutional statistically robust information collection data.

Gathering real-estate data on the internet (real-estate advertisement websites) requires to

follow a general procedure, which can be summarized as below:

A. Real-estate website identification – Real-estate websites are aggregators of

advertisement originating from real-estate agents, but also individuals, that generally have a

national coverage (the ads covers generally a single country). In other terms, it requires for

each country to define a listing of real-estate agencies in leadership situation (to obtain a

maximum of ads, well-structured and referenced). For France (Avignon, Geneva French part

and Paris), leboncoin.fr has been deemed of interest for this study, for its coverage and for its

data structure that allows a straightforward data harvesting effort, given the timeframe of the

study : in May 2019, it included 44886 real-estate offers (apartments only) and 20484 rental

offers in Paris.

B. Harvesting real estate online listings (ads) – Step 2 consists in getting the total number

of ads and determine the number of pages to scrape after having identified the relevant tags

 16

syntax in the URL query: as displayed in Figure 3.3 it corresponds to a geographical tag

(name of the NUTS3) and the type of offer tag (real estate offer / rental ; apartments and-or

houses, etc). Then, the method consists in exploring automatically all the adds included in all

pages of the query result. The output is a list of URLs to be harvested (one URL by offer).

Figure 3.3 - Get links to all ads of a given real estate Website

C. Identifying all the relevant information for listed properties. The next step consists in

preparing the script for each website to automatically fetch the data. It requires to harvest the

html webpage, and identify all the interesting attributes/tags to get (price, number of rooms,

surface, geographical location8…), as presented on Figure 3.4.

This is a tedious, very costly and time-consuming process that requires a lot of retro-

engineering. The cost and duration of the project allowed only for test drives and a few

months of collection, and some test platforms. We deliver a general methodology: it is

obvious that a script is valid for one real estate Website, considering the fact that they are

coded differently. Moreover, if the real estate Website change the organisation of the Web

page, the tags used in the script must be re-written. Such an iterative procedure is hand-

made, highly artisanal, and highly consuming in qualified worked-force, therefore

costly.

D. Data cleaning. The most common mistakes errors are duplicated ad’s (sometimes a real

estate ad can be published several times), absence of location coordinates or mistakes when

entering the real estate ad (area, price, etc.). Consequently, results obtained through the Web

scraping effort must be filtered. As an example for a case-study located in Yvelines in France,

8 Ideally, X/Y coordinates must be scrapped. For some real-estate website, like leboncoin.fr, it is

quite difficult to obtain this information. The LAU2 and the zip code are considered in this case.

 17

the 9934 observations collected resulted in 7460 unique and accurate records, with correct

location down to the municipality. The geocoding resulting from this procedure is in many

regards of poor quality compared to the locations provided by institutional data (transactions).

In the preliminary study, location data is provided by the website either as the city or

municipality (78%), and only a few ads are geocoded down to the address. In some other

cases location appear to be the location of the agency.

Figure 3.4 - Collect and sparse geospatial information

E. Data aggregation. Cleaned web-scraped data are then aggregated in targeted

geographical delineation (LAU2, grid), following the same methodology than the one used for

transaction data (Section 3.3. For some countries (Poland, Spain), it is possible to have

accurate X/Y location and it is consequently possible to aggregate real-estate offers at grid

level; for other countries, like in France with leboncoin.fr, X/Y location of real-estate offers is

not directly available, due to the design of the webpage. Harvested data can only be

aggregated at LAU2 scale for French real-estate offers.

 18

3.5 Harmonised indicators (FUA and LAU2 scale)

Following the data collection/cleaning procedures (steps 3.3 and 3.4), a dataset is created (as

a ‘sf’ object in R), which includes all the information required to launch the analysis,

respectively:

- Official geometries (LAU2 and grid)

- Income data (municipal and national income data)

- Aggregated transaction data, if available (rooms, surface, price, debt contracted)

- Aggregated web-scraped data for property sales (rooms, surface, price)

- Aggregated web-scraped data for property rental (rooms, surface, price)

With this structured information, it is possible to launch the analysis on the housing market

and produce harmonised indicators combining conventional, institutional and unconventional

data sources as exemplified in R CODE 4. This section provides examples on how to match

data contained in transactions and other web-scraped data sources, and how to combine

them to external sources, like municipal income (coming from National censuses) or national

income (EU surveys)9.

The first series of harmonised indicators to be built informs on the main characteristics of the

housing market: size (surface, number of rooms) of the properties (transactions, offer, rental),

number of offers, price per sq. meters of local markets. This information gives important

insights to document the heterogeneity of real-estate market segments in case-studies.

The second series of indicators combine prices, to compare housing

prices between and within case studies. These are variables of interest to get an overarching

understanding unequal access to housing: advertised price, income, debt, for instance. To

better understand inequalities on housing markets, we start with nominal price, and then

produce harmonized variables, based on ratios, s.a. price-to-income, to analyze affordability;

and debt-to-value, a proxy for inequalities stemming from equity capital availability of

households (data available for French case-studies only). Using municipal income allows to

highlight the financial effort that local households have done to get another property or

property rental on local real-estate market. On the other hand, the use of national income

questions on the effort that a standard household should do to access the local real-estate

market studied in the case study, highlighting how inaccessible a metropolitan market can be.

The section describes and documents the harmonized indicators produced at the FUA level,

than at the LAU2 levels, and finally at the 1k Grid level.

9 The use of national income provided by EU surveys allows namely to overcome the

heterogeneity of national income definitions.

 19

3.5.1 FUA indicators

One of the aims of the study consists also in producing statistical synthesis of transaction

data at FUA levels (all Paris FUA unit, with available data). This is done with the HousingStat

function, created for the project and described below (cf R CODE 4), which computes 29

indicators at FUA scale (using the LAU2 raw dataset, and aggregating these indicators using

weighted quantiles) relevant for discussing on housing characteristics and affordability:

• Transaction number (number)

• Surface of property (Q25, Q50, Q75, average)

• Number of rooms (Q25, Q50, Q75, average)

• Price paid (Q25, Q50, 75, average)

• Price paid per sq. meter (Q25, Q50, Q75, average)

• Time required to buy one square meter with municipal average income10 (10% of the

poorest-richest population + median income)

• Time required to rent one square meter according to municipal or national income

(10% of the poorest-richest population + median income)

• Debt contracted / transaction value.

The interest of this function is also to use it for web-scraped datasets and other case-studies,

as displayed below in the synthetic table of the well-being report. It allows consequently to

produce/update quite easily, data being available, statistical synthesis at FUA scale.

Table 3-2 – Harmonised indicators created at FUA scale (real estate offer) displaying synthetic
indicators at FUA scale

S
T

A
T

IS
T

IC
S

G
e
n
e
v
a
 (

C
H

)

G
e
n
e
v
a

(F

R
)

/

A
n
n

e
c
y
 (

F
R

)

W
a
rs

a
w

 (
P

L
)

L
o
d
z
 (

P
L
)

K
ra

k
o
w

 (
P

L
)

M
a
d
ri

d
 (

E
S

)

B
a
rc

e
lo

n
a
 (

E
S

)

P
a
lm

a

d
e

M
a
llo

rc
a
 (

E
S

)

P
a
ri
s
 (

F
R

)

A
v
ig

n
o
n
 (

F
R

)

Year of

reference

 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019

Number of

offers

 1096 10801 39293 1595 9382 79227 147094 22040 44886 5397

Surface

Q25 132.1 71 73.4 73.6 66.3 94.55 93.57 103.4 47.4 76.5

Q50 186 82 104.2 103.2 87.7 143.33 132.61 145.9 62 98.5

Q75 276.1 123.5 165.7 160.0 130.5 226.25 199.13 230.4 77.5 141.1

AV. 374.3 105.1 140.9 137.5 116.6 234.57 190.13 401.7 74.8 119.9

Rooms

Q25 NA 3.2 2.5 2.55 2.5 NA 2.74 NA 2.3 3.57

Q50 NA 3.9 3.5 3.53 3.4 NA 3.33 NA 3 4.44

Q75 NA 4.8 4.5 4.54 4.4 NA 4.16 NA 3.8 5.61

AV. 7.6 4.1 NA NA NA 3.37 3.52 3.38 3 4.65

Price Q25 1 184 282.9 116.1 62.3 89.7 209.3 233.7 242.1 209.1 167.8

10 Using statistics provided by National Statistical Institute.

 20

(thousands

euros)

Q50 1 863 373.6 168.5 872.7 117.5 334.4 334.4 360.5 274.9 233.0

Q75 3 076 500.4 280.8 143.4 178.0 590.7 507.8 587.3 371.3 344.8

AV 4 460 400.2 234.6 118.65 158.4 516.7 441.8 554.8 307.9 283.8

Price per sq.

meters

Q25 NA 3584.5 NA NA NA 1897.6 2193.6 1940.5 4138 1925

Q50 NA 4133.6 NA NA NA 2550.5 2722.8 2552.3 4764 2404

Q75 NA 4682.9 NA NA NA 3299.7 3388.9 3364.3 5474 2820

AV 11915 4002.8 1665.3 863.2 1357.8 2202.9 2324 1381.1 4118 2366

Price to

income

LOC11
 67.8 15.7 22.0 15.69 19.1 15.05 14.01 19.6 12.8 14.7

Q1012 217.1 35.7 77.1 39.0 52.1 93.17 79.67 100.04 25.2 24.1

Q50 112.7 19.6 39.5 19.96 26.6 36.38 31.11 39.1 13.9 13.3

Q90 61.4 10.6 20.7 10.48 14 17.67 15.11 19.0 7.6 7.2

Time required

to buy 1sq.

meter

(month)

LOC 2.2 1.8 1.9 1.27 2.0 0.77 0.88 0.59 2.1 1.48

Q10 7.0 4.1 6.6 3.41 5.4 4.77 5.03 2.99 4 2.41

Q50 3.6 2.2 3.4 1.74 2.7 1.86 1.96 1.17 2.2 1.33

Q90 2.0 1.2 1.8 0.92 1.4 0.90 0.95 0.57 1.2 0.72

###################### R CODE 4 #######################
Library(survey)
Library(sf)
Library (housing) (This package created within the project imports reference layers for all the case studies of the
ESPON Housing dynamics project (Paris, Avignon, Barcelona, Madrid, Palma de Majorque, Warsaw, Lodz, Krakow
and Geneva). The mapping functions implemented allow to create an ESPON map with all the required styles (colors,
labels, etc.)

This function is used for analysing case-study data at FUA level

HousingStat Function
HousingStat <- function(x, id, tsum, sq25, sq50, sq75, ssum,
 rq25, rq50, rq75, rsum, pq25, pq50, pq75, psum,
 psq25, psq50, psq75, incloc, incnatd1, incnatd5,
 incnatd9, pop, deb, name){

 # Delete NA and geometries
 try(if(missing("tsum") | missing("x") | missing("id")) stop("Transactions/offers number (tsum), data with geometries (x)
is at least required for the analysis", call. = TRUE))
 STAT <- st_set_geometry(x, NULL)
 STAT <- STAT[!(is.na(STAT[,tsum])),]

 # Number of transactions registered
 number <- sum(STAT[,tsum], na.rm = TRUE)

 # Apartment surface
 surface_q25 <- ifelse ((missing("sq25") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,sq25], svydesign(ids = STAT[,id] ,data = STAT[,sq25], weights = STAT[,tsum]))[1])
 surface_q50 <- ifelse ((missing("sq50") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,sq50], svydesign(ids = STAT[,id] ,data = STAT[,sq50], weights = STAT[,tsum]))[1])
 surface_q75 <- ifelse ((missing("sq75") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,sq75], svydesign(ids = STAT[,id] ,data = STAT[,sq75], weights = STAT[,tsum]))[1])
 surface_av <- ifelse ((missing("ssum") | missing("tsum")), NA,
 sum(STAT[,ssum], na.rm = TRUE) / number)

 # Rooms
 rooms_q25 <- ifelse ((missing("rq25") | missing("tsum") | missing("id")), NA,

11 Price to income at LAU2 level, municipalities of the FUA area (be careful to heterogeneity of

income definitions among EU countries).

12 Price to income at national level, first decile (EU-SILC Survey).

 21

 svymean(STAT[,rq25], svydesign(ids = STAT[,id] ,data = STAT[,rq25], weights = STAT[,tsum]))[1])
 rooms_q50 <- ifelse ((missing("rq50") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,rq50], svydesign(ids = STAT[,id] ,data = STAT[,rq50], weights = STAT[,tsum]))[1])
 rooms_q75 <- ifelse ((missing("rq75") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,rq75], svydesign(ids = STAT[,id] ,data = STAT[,rq75], weights = STAT[,tsum]))[1])
 rooms_av <- ifelse ((missing("rsum") | missing("tsum")), NA,
 sum(STAT[,rsum], na.rm = TRUE) / number)

 # Prices
 price_q25 <- ifelse ((missing("pq25") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,pq25], svydesign(ids = STAT[,id] ,data = STAT[,pq25], weights = STAT[,tsum]))[1])
 price_q50 <- ifelse ((missing("pq50") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,pq50], svydesign(ids = STAT[,id] ,data = STAT[,pq50], weights = STAT[,tsum]))[1])
 price_q75 <- ifelse ((missing("pq75") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,pq75], svydesign(ids = STAT[,id] ,data = STAT[,pq75], weights = STAT[,tsum]))[1])
 price_av <- ifelse ((missing("psum") | missing("tsum")), NA,
 sum(STAT[,psum], na.rm = TRUE) / number)

 # Prices / sq. meters
 price_met_q25 <- ifelse ((missing("psq25") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,psq25], svydesign(ids = STAT[,id] ,data = STAT[,psq25], weights =
STAT[,tsum]))[1])
 price_met_q50 <- ifelse ((missing("psq50") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,psq50], svydesign(ids = STAT[,id] ,data = STAT[,psq50], weights =
STAT[,tsum]))[1])
 price_met_q75 <- ifelse ((missing("psq75") | missing("tsum") | missing("id")), NA,
 svymean(STAT[,psq75], svydesign(ids = STAT[,id] ,data = STAT[,psq75], weights =
STAT[,tsum]))[1])
 price_met_av <- ifelse ((missing("ssum") | missing("psum")), NA,
 sum(STAT[,psum], na.rm = TRUE) / sum(STAT[ssum], na.rm = TRUE))

 # Price / income
 incomeloc_av <- ifelse ((missing("incloc") | missing("pop")), NA,
 sum((STAT[,incloc] * STAT[,pop]), na.rm = TRUE) / sum(STAT[,pop], na.rm = TRUE))
 price_incomeloc <- ifelse ((missing("price_av") | missing("incomeloc_av")), NA,
 price_av / incomeloc_av)
 price_incomenatD10 <- ifelse ((missing("price_av") | missing("incnatd1")), NA,
 price_av / STAT[,incnatd1][1])
 price_incomenatD50 <- ifelse ((missing("price_av") | missing("incnatd5")), NA,
 price_av / STAT[,incnatd5][1])
 price_incomenatD90 <- ifelse ((missing("price_av") | missing("incnatd9")), NA,
 price_av / STAT[,incnatd9][1])

 # Time required to buy 1sq meter
 time_loc <- ifelse ((missing("price_met_av") | missing("incomeloc_av")), NA,
 price_met_av / (incomeloc_av/12))
 time_natd10 <- ifelse ((missing("price_met_av") | missing("incnatd1")), NA,
 price_met_av / (STAT[,incnatd1][1]/12))
 time_natd50 <- ifelse ((missing("price_met_av") | missing("incnatd5")), NA,
 price_met_av / (STAT[,incnatd5][1]/12))
 time_natd90 <- ifelse ((missing("price_met_av") | missing("incnatd9")), NA,
 price_met_av / (STAT[,incnatd9][1]/12))

 # Time required to rent 1sq meter
 rent_loc <- ifelse ((missing("price_met_av") | missing("incomeloc_av")), NA,
 price_met_av / (incomeloc_av/365))
 rent_natd10 <- ifelse ((missing("price_met_av") | missing("incnatd1")), NA,
 price_met_av / (STAT[,incnatd1][1]/365))
 rent_natd50 <- ifelse ((missing("price_met_av") | missing("incnatd5")), NA,
 price_met_av / (STAT[,incnatd5][1]/365))
 rent_natd90 <- ifelse ((missing("price_met_av") | missing("incnatd9")), NA,
 price_met_av / (STAT[,incnatd9][1]/365))

 # Debt to value
 debt <- ifelse ((missing("deb") | missing("psum")), NA,
 sum(STAT[,deb]) / sum(STAT[,psum]))

 # Synthesis
 CS <- c(number, surface_q25, surface_q50, surface_q75, surface_av,
 rooms_q25, rooms_q50, rooms_q75, rooms_av, price_q25, price_q50,
 price_q75, price_av, price_met_q25, price_met_q50, price_met_q75,
 price_met_av, price_incomeloc, price_incomenatD10, price_incomenatD50,
 price_incomenatD90, time_loc, time_natd10, time_natd50, time_natd90, debt,
 rent_loc, rent_natd10, rent_natd50, rent_natd90)

 22

 Indicator <- c("number","surface_q25","surface_q50", "surface_q75", "surface_av",
 "rooms_q25", "rooms_q50", "rooms_q75", "rooms_av", "price_q25",
 "price_q50", "price_q75", "price_av", "price_met_q25", "price_met_q50",
 "price_met_q75", "price_met_av", "price_incomeloc", "price_incomenatD10",
 "price_incomenatD50", "price_incomenatD90", "time_loc", "time_natd10",
 "time_natd50", "time_natd90", "debt", "rent_loc", "rent_natd10",
 "rent_natd50", "rent_natd90")
 transactions <- data.frame(Indicator, CS)
 colnames(transactions)[2] <- name
 transactions <- format(transactions, scientific = FALSE, digits = 2)
 return(transactions)
}

Import LAU2 layer containing income and transaction data
city <- hm_import(folder = "Paris", filepath = "../mapkits")
LAU2 <- city$CommunesCS

In the parameters of the function, it is required to put in entry the LAU2 layer including all the reference
indicators (generated before) and setting all the relevant indicator labels.
transactions <- HousingStat(x = LAU2, id = "LAU2_", tsum = "TRANS_NUMBER",
 sq25 = "SURFACE_Q25", sq50 = "SURFACE_Q50",
 sq75 = "SURFACE_Q75", ssum = "SURFACE_SUM",
 rq25 = "ROOMS_Q25", rq50 = "ROOMS_Q50",
 rq75 = "ROOMS_Q75", rsum = "ROOMS_SUM",
 pq25 = "PRICE_PAID_Q25", pq50 = "PRICE_PAID_Q50",
 pq75 = "PRICE_PAID_Q75", psum = "PRICE_PAID_SUM",
 psq25 = "PRICESURF_Q25", psq50 = "PRICESURF_Q50",
 psq75 = "PRICESURF_Q75", incloc = "INCOME_Q50_1112",
 incnatd1 = "INCOME_D1_2012", incnatd5 = "INCOME_D5_2012",
 incnatd9 = "INCOME_D9_2012", deb = "DEPT_SUM",
 pop = "NBMENFISC_1112", name = "Paris")

3.5.2 LAU2 harmonized indicators

Producing harmonized indicators at LAU2 scale is the next step. The most relevant ratios are

combined starting from basic indicators. It is important to notice that it could be possible to go

far beyond the scope of the study, considering all the amount of data gathered and

aggregated. For instance, the data delivered for Paris includes more than 60 basic indicators.

It could be consequently possible to create much more indicators for analysing the real-estate

market.

Basically, the LAU2 targeted indicators (calculated for each case-study) are calculated as

follows (R CODE 5 and Figure 3.5):

- price/sq. meter (price paid, advertised price, rental), a standard indicator, but highly

contingent to the local structure of housing ;

- Three affordability indexes are calculated. Local affordability and national affordability

(cf Section 3.3.1), and also the difference between local and national affordability.

This last indicator provides an understanding weather it is easier for a local

household, as compared to a household coming from the rest of the country, to

access to property in the designated city (positive values) or not (negative values).

- Another index is the profitability index, calculated as a ratio between advertised price

for property and advertised price for property rental. A high index means two things:

Advertised price are high, as regards to rental offer; or rental offer are low, as regards

 23

to real estate offer. In other terms, a high index can be interpreted as locations where

the development of rental offers may be specifically interesting for real-estate

owners.

Figure 3.5 – From basic indicators (transaction, web-scraped and institutional data) to harmonised
indicators at LAU2 scale

###################### R CODE 5 #######################
Ratios to be combined
LAU2$PRICE_ASKED_SQ <- LAU2$OFFERS_SQRMETER_MEAN
LAU2$RENT_ASKED_SQ <- LAU2$RENT_SQRMETER_MEAN
LAU2$PRICE_TRANS_SQ <- LAU2$PRICE_PAID_SUM/LAU2$SURFACE_SUM
LAU2$PROFIT <- LAU2$PRICE_ASKED_SQ / LAU2$RENT_ASKED_SQ

LAU2$TRANS_SQ_METERS_LOC <- LAU2$PRICE_TRANS_SQ / (LAU2$INCOME_Q50_1112/12)
LAU2$TRANS_SQ_METERS_NATD5 <- LAU2$PRICE_TRANS_SQ / (LAU2$INCOME_D5_2011/12)
LAU2$TRANS_SQ_METERS_DIFF <- LAU2$TRANS_SQ_METERS_LOC - LAU2$TRANS_SQ_METERS_NATD5

LAU2$BUY_SQ_METERS_LOC <- LAU2$PRICE_ASKED_SQ / (LAU2$MED15/12)
LAU2$BUY_SQ_METERS_NATD5 <- LAU2$PRICE_ASKED_SQ / (LAU2$INCOME_D5_2015/12)
LAU2$BUY_SQ_METERS_DIFF <- LAU2$BUY_SQ_METERS_LOC - LAU2$BUY_SQ_METERS_NATD5

LAU2$RENT_SQ_METERS_LOC <- LAU2$RENT_ASKED_SQ / (LAU2$MED15/365)
LAU2$RENT_SQ_METERS_NATD5 <- LAU2$RENT_ASKED_SQ / (LAU2$INCOME_D5_2015/365)
LAU2$RENT_SQ_METERS_DIFF <- LAU2$RENT_SQ_METERS_LOC - LAU2$RENT_SQ_METERS_NATD5

3.5.3 Mapping LAU2 harmonised indicators

Harmonized indicators being available at the LAU2 level, the last section of the process can

be launched to create the final maps. This is done using the ‘housing’ and ‘cartography’ R

packages. The housing package has been especially developed for the project to import EU

reference layers for all the case studies of the ESPON Housing dynamics project (Paris,

Avignon, Barcelona, Madrid, Palma de Majorque, Warsaw, Lodz, Krakow and Geneva). The

mapping functions implemented allow to create an ESPON map with all the required styles

(colors, labels, logos etc.). The cartography package offers a series of tools to design

thematic cartography such as proportional symbols, choropleth, typology, flows or

 24

discontinuities maps. It also offers several features that improve the graphic presentation of

maps, for instance, map palettes, layout elements (scale, north arrow, title...), labels or

legends. These packages allow for a certain level of automation of iterative tacks. See R

CODE 6.

All the maps produced for the Wellbeing report have been created using the same

methodology discretization methodology: “q6”, which is a method using quantile

probabilities (0, 0.05, 0.275, 0.5, 0.725, 0.95, 1). From a cartographic perspective, the

interest of the thresholds it introduced for cutting the statistical series is twice: first, it allows to

introduce a double colour palette (warm colours below the case-study median and cold

colours above the median); second the maps created for all the case-studies are comparable:

for each case-study it is possible to observe on the map the 5 % of the units with higher/lower

values. This choice of thresholds is another way to make the results comparable within and

across case-studies.

R CODE 6 is designed to produce 2 types of maps: price to income ratio (local income, price

paid) and advertised price to income ratio (with web-scraped data). All the maps produced

have been realized using this methodology. As a consequence, it is possible to produce

quickly a large set of maps for each case-study for analysing housing market characteristics

in 10 case-study cities.

###################### R CODE 6 #######################
Library(cartography)
Library(sf)
Library (housing)
Import reference geometries used for the map (with indicators)
city <- hm_import(folder = "Paris", filepath = "../mapkits")

Maps parameters
sizes <- getFigDim(city$stripe, width = 800, mar=c(0,0,0,0))

Time required to buy 1 sq. meters locally (indicator to be mapped)
Extract the map in vector format, correctly sized (pdf)
pdf(file = "../fig/03_LAU2_PRICE_SQ_METERS_LOC.pdf",width = sizes[1]/72, height = sizes[2]/72,
useDingbats=FALSE, pointsize=15.3568)

Plot background layers (template)
hm_bg(city)

Map the indicator
choroLayer(LAU2, var = "TRANS_SQ_METERS_LOC", method = "q6",
 col = carto.pal(pal1 = "taupe.pal", n1 = 6),
 colNA = "white", border = "white", lwd = 0.1, legend.pos = "n",
 add = T)

Plot top layers, logos and texts (data sources, title, etc.)
hm_top(x = city, title = "Affordability - municipal income, 2011-2012 (apartments only)",
 source = "INSEE and BIEN Database, 2019", object = "LAU2")

Plot the legend
legendChoro(pos = c(st_bbox(city$stripes[3,])[3] + (st_bbox(city$mainframe)[3] - st_bbox(city$zoomBox)[3]),
 (st_bbox(city$mainframe)[2] + st_bbox(city$mainframe)[4]) / 1.975),
 title.txt = "Months of local income required to buy 1sq. meter\nAverage advertized price for property per
square meters / average municipal income 2016\n(85278 transactions - sample)",
 title.cex = 0.6, values.cex = 0.5, cex = 0.8,
 breaks = getBreaks(LAU2$TRANS_SQ_METERS_LOC, method = "q6"),
 col = carto.pal(pal1 = "taupe.pal", n1 = 6),
 nodata.col = "white", values.rnd =1)
Export the map
dev.off()

 25

And the same with web-scraped data - Time required to buy 1 sq. meters locally
pdf(file = "../fig/10_LAU2_BUY_SQ_METERS_LOC.pdf",width = sizes[1]/72, height = sizes[2]/72,
useDingbats=FALSE, pointsize=15.3568)
hm_bg(city)

choroLayer(LAU2, var = "BUY_SQ_METERS_LOC", method = "q6",
 col = carto.pal(pal1 = "taupe.pal", n1 = 6),
 colNA = "white", border = "white", lwd = 0.1, legend.pos = "n",
 add = T)

hm_top(x = city, title = "Affordability (apartments only) - municipal income, 2019",
 source = "INSEE and Leboncoin, 2019", object = "LAU2")

legendChoro(pos = c(st_bbox(city$stripes[3,])[3] + (st_bbox(city$mainframe)[3] - st_bbox(city$zoomBox)[3]),
 (st_bbox(city$mainframe)[2] + st_bbox(city$mainframe)[4]) / 1.975),
 title.txt = "Months of local income required to buy 1sq. meter\nAverage advertized price for property per
square meters / average municipal income 2016\n(44886 offers scrapped in May 2019)",
 title.cex = 0.6, values.cex = 0.5, cex = 0.8,
 breaks = getBreaks(LAU2$BUY_SQ_METERS_LOC, method = "q6"),
 col = carto.pal(pal1 = "taupe.pal", n1 = 6),
 nodata.col = "white", values.rnd =1)
dev.off()

Map 3-1 Two resulting maps created with the R CODE 6

3.6 Grid data and interpolation – spatial harmonisation issue to obtain
a global and accurate picture of the real-estate market locally

For each case-study, at least one indicator has been aggregated at 1 km grid level. The

resulting raw map (Map 3-2) for Paris reveals three phenomena which may affect the

interpretation and the dissemination of the map:

- High spatial heterogeneity: despite data cleaning (exceptional values), spatial

structures are not clear: in the suburbs, high values are closed to lower ones. In

suburban areas especially, because of the fragmented structure of the built

environment and lower densities, classical econometric hypothesis regarding spatial

autocorrelation of property prices are often unverifiable (Le Goix et al., 2019b).

 26

- Missing values. It can be due to a lack of transaction in some grid cells or the

impossibility to display the data considering the fact that the number of observed

transaction is below the confidentiality threshold allowed by the Chamber of Notaries

database: it is not possible to disseminate data (datasets, or data displayed on maps)

below a given number of 5 transactions by territorial units (at LAU2 or grid level)

coming from the Chamber of Notaries database.

- Impossibility to disseminate the data as such, also due to confidentiality threshold.

Map 3-2 Average advertised price at 1 km grid level – raw map

Grid interpolation allows us to estimate a potential price in adjacent cells, with assumptions

regarding the spatial interactions between transactions. To offset these limitations, we use a

combination of a 1km grid and techniques of interpolation, following the assumptions of

Stewart’s potential, using the `SpatialPosition R package (Commenges et al., 2015). For

examples and detailed discussion of methodology regarding data processing, gridding,

interpolation, and mapping, see (Le Goix et al., 2019b).

The use of interpolation and estimation procedures allows to better control the quality and

representativeness of the spatial information produced, which is an estimation of the price, i.e.

a potential price. To do so, we used ‘SpatialPosition’, a R package allowing to compute

Stewart potential.

The Stewart potentials of population is a spatial interaction modeling approach which aims to

compute indicators based on stock values weighted by distance. These indicators have two

 27

main interests: first, they produce understandable maps by smoothing complex spatial

patterns; second they enrich the stock variables with contextual spatial information (Giraud,

Commenges, 2019). At the European scale, this functional semantic simplification may help

to show a smoothed context-aware picture of the localized socio-economic activities. It is also

a convenient methodological solution to offset the risk of Modifiable Area Unit Problem

(MAUP).

To interpolate and create Stewart potential, several steps are iterated, as displayed in the R

CODE 7:

• We create a distance matrix between the grid cells. Several methods for measuring

the distance can be considered: functional distances (time-road distance for

instance) or mathematical distance (Euclidian distance, Manhattan distance). Here

the Manhattan distance is considered, also called “taxi-distance”, especially useful

for city networks.

• We compute the potential according to a specific spatial interaction function. The

function inputs the matrix distance calculated above, known observations to

computes the estimates (sum of price paid and sum of property surface for

Paris), spatial interaction function (Pareto or Power law), span (distance where the

density of probability of the spatial interaction function equals 0.5 – 2000 m) and a

beta parameter (impedance factor for the spatial interaction function).

The parameters used for the analysis (2000m for the span, Pareto for the spatial

interaction function, 2 for the beta) are justified by the resolution of the grid (1km) and a

review of the literature on spatial characteristics of real-estate information, and semi-variance

tests performed on the datasets.

The Map 3-3 is the result of this harmonisation. It allows to go beyond the LAU2 delineation,

overcome the MAUP effect, and interpolate values ceteris paribus the number of observed

transactions and yields a global and accurate picture of the real-estate market on Paris FUA.

###################### R CODE 7 #######################
library(SpatialPosition)
library(sf)

Create dist matrix (manhattan dist)
cGRID <- st_coordinates(st_centroid(st_geometry(GRID)))
row.names(cGRID) <- GRID$GRD_ID
mat <- as.matrix(dist(cGRID, method = "manhattan"))
row.names(GRID) <- GRID$GRD_ID

Delete 1% higest and lowest values & observations below 5
Q <- quantile(GRID$PRICE_ASKED_SQ, probs = c(.01,.99), na.rm = T)
sel_o <- GRID$TRANS_NUMBER > 5 & !is.na(GRID$TRANS_NUMBER) &
 GRID$PRICE_ASKED_SQ >= Q[1] & GRID$PRICE_ASKED_SQ <= Q[2]
x <- GRID[sel_o,]

Span & potential calculation
span <- 2000
beta <- 2
p_prix_o <- stewart(knownpts = GRID[sel_o,], unknownpts = GRID[, "GRD_ID"],
 varname = "PRICE_PAID_SUM", matdist = mat,
 typefct = "pareto", beta = beta, span = span,

 28

 returnclass = "sf")
p_surf_o <- stewart(knownpts = GRID[sel_o,], unknownpts = GRID[, "GRD_ID"],
 varname = "SURFACE_SUM", matdist = mat,
 typefct = "pareto", beta = beta, span = span,
 returnclass = "sf")

Merge outputs with grid layer
GRID$OFFERS_PRICE_SUM_SM <- p_prix_o$OUTPUT
GRID$OFFERS_SURFACE_SUM_SM <- p_surf_o$OUTPUT
GRID$PRICE_ASKED_SQ_SM <- GRID$OFFERS_PRICE_SUM_SM/GRID$OFFERS_SURFACE_SUM_SM

Map 3-3 Average advertised price at 1 km grid level – smoothed map (span = 2000m, Pareto
function, beta = 2)

3.7 Comparing real-estate values to other big data sources (Airbnb)

To go beyond the analysis of main data provided with the Wellbeing being report, we also

tested the interest to combine these indicators with other big data sources, like Airbnb.

As a first analysis, the aim consists in answering a striking and often fuzzy policy issue: to

what extent Airbnb affects real-estate residential market? That is to say, to what extent

 29

the withdrawal of rental offers from residential markets puts a pressure on real estate markets

that conditions the availability of affordable permanent housing for prospective buyers and

renters?

This analysis, initially done for Paris with transactions data, has revealed significant

relationship between real-estate transaction and Airbnb offer (density in 200m grid cells,

preliminary smoothed) (Pecout et al., 2016). We do not compare price, but only the number of

transactions and the number of Airbnb offers (in a regular grid, i.e. densities): positive outliers

of a linear relationship between the number of transactions and the number of Airbnb rentals

show that an abnormal number of properties are converted and used for short term rental,

and subtracted (extracted for short term profit) from the residential markets. But more

interesting is the analysis of the statistical regression and its residuals. When mapping the

fine grain geography of these residuals, it appears clearly that for the center part of Paris and

touristic neighborhoods (Montmartre), more Airbnb offer appear, all things being equal to the

density of real-estate transactions, less real-estate transaction happened. It reveals

consequently spatial concentration of real-market pressurisation.

Figure 3.6 – Comparing Airbnb and real-estate transactions (Paris).
Density of Airbnb offer (a.) compared to the density of transactions on apartment property markets (b.).
Residuals (c) of the linear regression (d).

 30

One of the challenges of this project was to test the same methodology, developed in a R

program (cf R CODE 8) to other case-studies. It has been done for Barcelona in the same

spatial resolution (200 m grid preliminary smoothed), comparing real-estate offers

(apartments) and Airbnb density offers. The statistical relationship is still significant (r2 > 0.8).

Residual maps show high residuals (more Airbnb offer expected, all things being equal to the

density of real-estate offers) in the Core city of Barcelona (La Rambla, Sagrada Familia

quarter).

Figure 3.7 – Comparing Airbnb and real-estate offer (Barcelona)

###################### R CODE 8 #######################

library(cartography)
library(sf)
library(SpatialPosition)
library(ggplot2)

folder <- "Barcelona"

1 - Import the data and relevant layers
Data

 31

grid <- st_read(paste0(folder,"/200.shp"), stringsAsFactors = F) # 200 m grid
airbnb <- read.csv(paste0(folder,"/Airbnb200.csv")) # Airbnb offer
offer <- read.csv(paste0(folder,"/FotoBuy200.csv")) # Real estate offer
grid <- merge(grid, airbnb, by.x = "ID", by.y = "id", all.x = TRUE)
grid <- merge(grid, offer, by.x = "ID", by.y = "id", all.x = TRUE)
names(grid)[7:8] <- c("AIRBNB","REAL_ESTATE")

Layers (carto)
city <- st_read(paste0(folder, "/layers/CityCS.shp"), stringsAsFactors = F)
lau2 <- st_read(paste0(folder, "/layers/CommunesCS.shp"), stringsAsFactors = F)

2 - Data smoothing
Create dist matrix (manhattan dist)
span <- 500
beta <- 2
method <- "manhattan"
fct <- "exponential"

cGRID <- st_coordinates(st_centroid(st_geometry(grid)))
row.names(cGRID) <- grid$ID
mat <- as.matrix(dist(cGRID, method = method))
Compute potential
row.names(grid) <- grid$ID

Delete values below 1
sel_a <- grid$AIRBNB > 1 & !is.na(grid$AIRBNB)
sel_o <- grid$REAL_ESTATE > 1 & !is.na(grid$REAL_ESTATE)

Span & potential calculation
p_dens_a <- stewart(knownpts = grid[sel_a,], unknownpts = grid[, "ID"],
 varname = "AIRBNB", matdist = mat,
 typefct = fct, beta = beta, span = span,
 returnclass = "sf")
p_dens_o <- stewart(knownpts = grid[sel_o,], unknownpts = grid[, "ID"],
 varname = "REAL_ESTATE", matdist = mat,
 typefct = fct, beta = beta, span = span,
 returnclass = "sf")

grid$pot_AIRBNB <- p_dens_a$OUTPUT
grid$pot_REAL_ESTATE <- p_dens_o$OUTPUT

Density (offer / sq. kilometer)
grid$pot_AIRBNB <- grid$pot_AIRBNB/4
grid$pot_REAL_ESTATE <- grid$pot_REAL_ESTATE/4

Delete 0 values
sel <- grid$pot_AIRBNB > 1 & grid$pot_REAL_ESTATE > 1
grid <- grid[sel,]

3 - Mapping
Real estate offers
sizes <- getFigDim(city, width = 800, mar=c(0,0,0,0))

pdf(file = paste0(folder,"/fig/REAL_ESTATE.pdf"),width = sizes[1]/72,
 height = sizes[2]/72, useDingbats=FALSE, pointsize=18)

disc <- quantile(grid$pot_REAL_ESTATE, probs = seq(0,1,0.0625), na.rm = TRUE)

plot(st_geometry(grid), col = NA, border = NA)
plot(st_geometry(lau2), col = "#c6c4c4", border = "white", add =TRUE)

choroLayer(x = grid, var = "pot_REAL_ESTATE", breaks = disc, nclass = 16,
 col = carto.pal(pal1 = "green.pal", n1 = 8, pal2 = "red.pal", n2 = 8),
 border = NA, add = TRUE, legend.pos = "bottom", legend.horiz = TRUE,
 legend.title.txt = paste0("Number of offers in a neighbourhood of ",
 span, " m (deciles)\nSteward potential, ",method," distance, ",
 fct, " function, beta = ",beta),
 legend.values.rnd = 1)

plot(st_geometry(city), col = NA, border = "black", lwd = 0.5, add = T)

layoutLayer(title = "Density - Real estate offers (2019)", scale = 2,
 tabtitle = TRUE, theme = "red.pal")
dev.off()

 32

Airbnb offers
pdf(file = paste0(folder,"/fig/AIRBNB.pdf"),width = sizes[1]/72,
 height = sizes[2]/72, useDingbats=FALSE, pointsize=18)

disc <- quantile(grid$pot_AIRBNB, probs = seq(0,1,0.0625), na.rm = TRUE)

plot(st_geometry(grid), col = NA, border = NA)
plot(st_geometry(lau2), col = "#c6c4c4", border = "white", add =TRUE)

choroLayer(x = grid,var = "pot_AIRBNB", breaks = disc, nclass = 16,
 col = carto.pal(pal1 = "green.pal", n1 = 8, pal2 = "red.pal", n2 = 8),
 border = NA, add = TRUE, legend.pos = "bottom", legend.horiz = TRUE,
 legend.title.txt = paste0("Number of offers in a neighbourhood of ",
 span, " m (deciles)\nSteward potential, ",method," distance, ",
 fct, " function, beta = ",beta),
 legend.values.rnd = 1)

plot(st_geometry(city), col = NA, border = "black", lwd = 0.5, add = T)

layoutLayer(title = "Density - Airbnb offers (2019)",
 scale = 2,
 tabtitle = TRUE,
 theme = "green.pal")
dev.off()

4 - Statistical regression
lin<-lm(grid$pot_AIRBNB ~ grid$pot_REAL_ESTATE)

coeff <- lin$coefficients[2]
int <- lin$coefficients[1]

txt <- paste0("POT_AIRBNB = ", round(coeff,2),
 " * POT_REAL_ESTATE ", round(int,2))
txt2 <- paste0("R-squared = ", round(summary(lm(grid$pot_AIRBNB~grid$pot_REAL_ESTATE))$r.squared,2))

layout(matrix(1:4,2,2)) > plot(lin2)

pdf(file = paste0(folder,"/fig/LM.pdf"),width = sizes[1]/72,
 height = sizes[2]/72, useDingbats=FALSE, pointsize=25)

ggplot(grid, aes(pot_REAL_ESTATE, pot_AIRBNB)) +
 geom_point(size = 1, colour = "black") +
 stat_smooth(method = "lm") +
 # geom_smooth(aes(group=transect), method="lm") +
 ylab("Density (hectare) of Airbnb offers - 2018") +
 xlab("Density (hectare) of real-estate offers - 2019") +
 annotate("text", x = max(grid$pot_REAL_ESTATE), y = max(grid$pot_AIRBNB), label = txt, hjust = 2) +
 annotate("text", x = max(grid$pot_REAL_ESTATE), y = max(grid$pot_AIRBNB), label = txt2, hjust = 2) +
 ggtitle("Relationship between Airbnb and real-estate offers")
dev.off()

5 - Residuals
grid$estimate_lin <- ((coeff*grid$pot_REAL_ESTATE) + int)
grid$residual_lin <- (grid$pot_AIRBNB - grid$estimate_lin)

pdf(file = paste0(folder,"/fig/RESIDUALS.pdf"),width = sizes[1]/72,
 height = sizes[2]/72, useDingbats=FALSE, pointsize=18)

plot(st_geometry(grid), col = NA, border = NA)
plot(st_geometry(lau2), col = "#c6c4c4", border = "white", add =TRUE)

choroLayer(x = grid, var = "residual_lin", method = "sd",
 col = carto.pal(pal1 = "blue.pal", n1 = 9, pal2 = "red.pal", n2 = 6),
 border = NA, add = TRUE,legend.pos = "bottom", legend.horiz = TRUE,
 legend.title.txt = "Residuals of linear model,\n density of Airbnb offer (y) and real estate offer (x)",
 legend.values.rnd = 1)
plot(st_geometry(city), col = NA, border = "black", lwd = 0.5, add = T)

layoutLayer(title = "Residuals",
 scale = 2,
 tabtitle = TRUE,
 theme = "blue.pal")

dev.off()

 33

4 Summary of methodological and conceptual outputs. Next
steps for further studies.

This project, short by its duration (9 months), allowed for some significant scientific and

methodological endeavours and advancement of knowledge, in two respects: gathering and

combining real-estate heterogeneous statistical information. It demonstrated also some

significant inputs for comparing between neighbourhood and between cities, the current state

of housing markets on real-estate market. More than 80 indicators have been produced at

LAU2 and grid scales related to real-estate market. Looking at the current data availability at

European scale (few indicators, only available at FUA or Core city level), it is indubitable that

it provides some advances to go far away for measuring wellbeing of European citizens as

regards to the real-estate market. From our point of view, the main methodological

progresses allowed by this study are:

- The creation of an operational methodological framework for producing

comparable analysis between case-study cities. As far as we know, this project is

the first one which tries to define a common methodological framework for the

analysis of real-estate market in an international perspective at this very local scale.

The definition of relevant data sources, the data collection process (targeting basic

indicators), the data cleaning and the data harmonisation process (harmonised

indicator of high policy value and spatial smoothing to manage the MAUP effects) is a

solid foundation upon which further studies can elaborate upon. Moreover, the

integration of the methodological framework in a R standard code workflow ensures

the reproducibility of the inputs provided. It opens also the door to further

methodological improvements (statistical analysis, data cleaning and so on).

- It combined conventional and unconventional data sources, from institution or

commercial providers. This was clearly one important challenge to overcome in a

very short amount of time. This was realised both by using real-estate agents data

sources and data coming from the Web (Airbnb offers) to put into perspective data

coming from institutional data sources (transaction and income data). Maps realised

show concrete spatial structures and territorial discontinuities inside and between the

studied cities.

- Multiscalar perspective for feeding the policy debate. More than 100 maps have

been created for 10 selected case-studies. These maps, based on local observations

(the level of the transaction or the real-estate offer) offer innovative insights on

socio-economic dynamics and challenges inside and between European cities.

Most of the studies on European cities are limited, due to statistics availability, at the

scale of the city (EU FUA or core cities). These new elements brought here are in

capacity to feed the policy debate on inequalities inside the city. For instance at EU

level, Paris is often considered as an example: smart, open to the World, creative,

etc. The elements brought here also demonstrate, regarding housing market, that

 34

Paris and its Functional Urban Area is also very unequal: at LAU2 level, advertised

prices for property per square/meters in 2019 (leboncoin.fr) ranges from 1,430

euros/sq meter in the North-Western part of Paris FUA (Montreuil-sur-Epte), up to

16,000 euros (Paris 6th arrondissement). With reference to the level of wealth of local

population (median income), buying 1sq. meter corresponds to 0.8 months of income

(minimum value) in Grigny (Southern suburbs), up to 9 months in Paris (6th

arrondissement). The situation on the rental market is similar: renting 1sq. meter

(advertised price) corresponds to less than 10 euros per month in the periphery

(Coulombs, Cerny) to more than 40 euros in the inner city or its immediate suburbs

(Clamart, Western part of Paris). From our point of view, it is clearly by combining the

scale of analysis (EU level, city level, intra-urban level) that it will be possible to

provide policy makers with a better understanding of the challenges raised by real-

estate dynamics for accessing to descent housing near to the center of economic and

employment basins.

Nevertheless, studies on international comparisons on spatial effects of housing

inequalities are just beginning. Given the time-frame of the data collection and

preparation of the Wellbeing report, some items should be considered for further studies,

covering both data collection and analysis issues:

- We pathed the way to extend the analysis to other case-studies. Gathering data

for all the European cities would be obviously the ultimate target, but also a dream.

Indeed, this study has demonstrated – starting from level 0 of data availability at

European level – that it will not be possible without significant resources and funding.

From institutional perspective, it would require to identify the most appropriate data

providers and negotiate the access to the transaction data for each country of

Europe. In this case, data have been bought with researches agreements outside the

project for a city selection (Chamber of Notaries in France, Townhall transactions

taxes for Barcelona, real estate price register in Poland). The main difficulty here,

outside the cost of the data is also first to manage the territorial level of access to the

data (BIEN database covers only Ile-de-France, PERVAL the rest of France. In Spain

data are available at municipal level and not for the entire country); and secondly to

obtain comparable data between this high heterogeneity of data providers. As

demonstrated in this document, the BIEN database covers 96 indicators and makes

possible in-depth analysis on the socio-economic characteristics of the seller or the

buyer. For other countries, like in the UK, only the point location of the transaction

and the price is available. In this context, using web-scraped methods can be

considered as an adapted alternative. This study has demonstrated that it can be true

to some extent. Some relevant statistics may be produced. But the amount of work it

induces is high: defining relevant real-estate agents, creating scraping procedures (1

 35

by data provider) and data cleaning is not an easy process. And modeling it at the

scale of a research project is not necessary the best solution. However, transferring

these procedures of data collection and cleaning to national and/or EU statistical

institutions may be a sustainable solution in the long term.

- The scraping and web-harvesting process has proven to be costly and does not

always insure a cost-effective way to gather significant data, in a non-commercial

data aggregation effort. The code further requires constant improvement and

technological follow-up to be useable with future implementation of the targeted

websites: the web-mining effort involves a constant manning of the process.

- How to integrate the time dimension and compare institutional and

unconventional data sources. Even if data have been collected, going more in-

depth in cross-analysis of these data sources should be promising, as demonstrated

by the comparison of Airbnb offer and real-estate offer. In that perspective, comparing

the relationship between real-estate transactions and offers should be considered.

First of all, it allows to statistically check the validity of real-estate offers, as a proxy of

the real-estate market. Several issues may be explored: for instance the analysis of

the density of offers as compared to the density of real transactions may reveal some

interesting patterns. Some areas may be characterized by an over-representation of

offers, as regards to real-estate actual transactions. It may suggest some disinterest

for some specific areas. Reversely, over-representation of real-estate transactions as

regards to offer may suggest a pressurized real-estate market (lack of offers).

Secondly, the analysis of the relationship between advertised price and price paid (or

price paid towards the time) may also be explored. This kind of analysis raises among

others the issue of the real-estate market structure and evolution: Where advertised

prices are growing, all things being equal to price paid some years ago? Are the

trends observed towards the time homogeneous in the urban area, or not? Are these

real-estate trends correlated to socio-economic characteristics, or not (gentrification

issues)?

- Further studies should systematically differentiate apartments and houses for

the analysis. Except for Paris (only apartments have been considered), analysis are

provided for houses and apartments combined in the analysis. Also, the

segmentation of residential markets does not systematically compares between

different cities. In fact, at the scale of the Functional Urban Areas, the analysis should

be more focused on apartments, which represents the largest part of the housing

park. When looking into the suburbs of the FUA, the housing park is on average more

structured by individual housing, which does not follow the same real-estate market

segmentation and rental/buying structure. The fact to take into account houses in the

analysis raises also some methodological issues which must be clarified to create

consistent datasets: to what extent does it make sense to measure the surface of a

 36

house for an evaluation of the price per sq.meters? Does it requires to take into

account the garden or not? Does the data providers (institutional data providers, real-

estate agents) differentiate living space and the garden in real-estate transactions

database and ads? Not systematically: this is another drawback of using

unconventional “big data” sources.

- Go far away for data smoothing. Harmonized maps created used basically the

price/square meter parameter and homogeneous functions parameters, based on

literature review (Pareto function, Manhattan distance, beta = 2, span = 2000m) to

interpolate real-estate values in the space. Results are promising but could at least

be extended in two different ways. First, elaborating further on the analysis of

interpolation methods and how to implement the distance decay function between

transactions. It can be explored with the use of variograms (Figure 4.8). In spatial

statistics, this function describes the degree of spatial dependence of a spatial

random field. In practice, the use of variogram in the context of real-estate analysis

may propose interesting perspectives for a better understanding of the local real-

estate market structure and could help to better define appropriate parameters for

better modeling the Stewart potential used to interpolate price in the space.

Figure 4.8 – Variogram of advertised price of real-estate property prices (euros/sq. kilometer) in
Barcelona according to distance

Secondly, there is no unique scale at which should be defined the spatial extent of

“higher prices” or “lower prices”. Each type of economic and social interaction indeed

spans specific geographic distances. Each of the scales of analysis may be relevant

and closely pertains to urban contexts and also stakeholders. Obviously for real-

estate agents or people interested in buying a real-estate property the local context

(Figure 4.9, top left, span = 1km) is the most relevant. For urban planners or policy

 37

makers the intermediate level (2-5km) gives important insights on the local structure

of the market and gives overall information on intra-urban discontinuities and

inequalities. At European level, smoothed map with a more generalized information

provides significant insights on the global organization of real-estate market in

Functional Urban Areas, and is certainly more adapted for international comparisons.

This first attempt may be explored more in depth in the future, and requires

sometimes to return on the data structure to identify if exceptional values observed

corresponds to the reality or due to statistical artifacts (outliers in specific locations).

Figure 4.9 – Average real-estate transaction prices (euros per square meters) in Paris interpolated at
several geographical scales (span parameter = 1000m, 2000m, 5000m and 10000m)

 38

Annex 1 – Python scripts used to harvest French real-estate
website

The python scraping program developed elaborates on Scrapy, a python library mostly

focused on data harvesting. Scrapy runs using different python files, and a main organisation

that the user can change to fit his needs. The user sets “spiders” that crawl through selected

webpages and gather information required by the user, using the html code of said pages

(see figure A.1). Each item of the following layout is a python file who either holds information

that is usefull for scraping or crawls the webpages to gather information.

Figure A.1 - Scraping webpages using Scrapy

################### MAIN_SCRAPING ####################

import scrapy
twisted is a python library that is used to run scrapy
from twisted.internet import reactor, defer
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

#https://doc.scrapy.org/en/latest/topics/practices.html

Main_Scraping

choosing which spider to run

To scrape rent data :

Spider_Rents

To scrape sales data :

Spider_Sales

Spider_Rents

installing packages

creat ing output csv

using input csv to select townships

creat ing the url of data to scrape

checking for duplicates

scraping data

adding scraped data to output csv

Requirem ents

list of all the packages that are

used for the scraping program

Output docum ent

list of all the packages that are

used for the scraping program

Spider_Sales

installing packages

creat ing output csv

using input csv to select townships

creat ing the url of data to scrape

checking for duplicates

scraping data

adding scraped data to output csv

Item s

list of all the variables that will

appear in the output csv

 39

from boncoin_project.spiders import Cities
from boncoin_project.spiders import locations
configure_logging()
runner = CrawlerRunner()

A runner is defined to send spiders to crawl on the webpages
here you can choose which spider to use (crawl rent or sales offers)
@defer.inlineCallbacks
def crawl():
 yield runner.crawl(Cities.Cities)
 yield runner.crawl(locations.Locations)
 yield runner.crawl(another spyder)
 reactor.stop()
crawl()
reactor.run()

################### REQUIREMENTS ####################

cfscrape
fake-useragent
beautifulsoup4
pendulum
scrapy
csvkit
pandas

################### ITEMS ####################

Define here the models for your scraped items
See documentation in:
http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

allows us to import in the csv file the information that has been scraped online

the AnnoncesSales class is used to store the data collected on household sales
class AnnoncesSale(scrapy.Item):
 annoncet = scrapy.Field()
 logprix = scrapy.Field()
 url = scrapy.Field()
 #descr = scrapy.Field()
 loghonoraires = scrapy.Field()
 logtypebien = scrapy.Field()
 lognbpieces = scrapy.Field()
 logsurface = scrapy.Field()
 energieclass = scrapy.Field()
 energieges = scrapy.Field()
 annonceh = scrapy.Field()
 annonced = scrapy.Field()
 logcodepost = scrapy.Field()
 logville = scrapy.Field()
 scrapdate = scrapy.Field()
 scrapheure = scrapy.Field()
 ID_URL = scrapy.Field()
 agenceimmonom = scrapy.Field()
 agenceimmoadresse = scrapy.Field()
 agenceimmosiret = scrapy.Field()
 agenceimmosiren = scrapy.Field()
 agenceimmotel = scrapy.Field()
 insee = scrapy.Field()
 typetransaction = scrapy.Field()

the AnnonceLoc class is used to store the data collected on houses and apartments rentals
class AnnoncesRental(scrapy.Item):
 annoncet = scrapy.Field()
 logprix = scrapy.Field()
 url = scrapy.Field()
 #descr = scrapy.Field()
 logcharges = scrapy.Field()

 40

 logtypebien = scrapy.Field()
 lognbpieces = scrapy.Field()
 logsurface = scrapy.Field()
 energieclass = scrapy.Field()
 energieges = scrapy.Field()
 annonceh = scrapy.Field()
 annonced = scrapy.Field()
 logcodepost = scrapy.Field()
 logville = scrapy.Field()
 scrapdate = scrapy.Field()
 scrapheure = scrapy.Field()
 ID_URL = scrapy.Field()
 agenceimmonom = scrapy.Field()
 agenceimmoadresse = scrapy.Field()
 agenceimmosiret = scrapy.Field()
 agenceimmosiren = scrapy.Field()
 agenceimmotel = scrapy.Field()
 insee = scrapy.Field()
 typetransaction = scrapy.Field()

################### SPIDER_RENT ####################

SPIDER
used to scrape only rentals

list of required packages to successfully run the spider
from bs4 import BeautifulSoup
import scrapy
import cfscrape
from fake_useragent import UserAgent
import pendulum
import json
import random
from boncoin_project.items.Items import *
import csvkit
import pandas as pd

class Locations(scrapy.Spider):
 name = "locations"
 # specifying already existing settings, this part can filled out by the user
 custom_settings = {
 # gives the number of concurrent requests that will be run at the same time, to avoid detection on the
scraped
 # website, it is best to use one request at a time
 'CONCURRENT_REQUESTS': '1',
 # allows us to set how long each request will take. If our program scraps too quickly, it might get
detected by
 # the website security. For Leboncoin, two seconds for each request should work fine.
 'DOWNLOAD_DELAY':'2',
 'COOKIES_ENABLED': True,
 # HTTPERROR_ALLOWED_CODES allows certain errors, meaning the program keeps running after
encountering them
 'HTTPERROR_ALLOWED_CODES':[404],
 'FEED_EXPORTERS': {
 'csv': 'scrapy.exporters.CsvItemExporter'},
 # allows us to choose the type of file that is produced in output by the program
 'FEED_FORMAT' : 'csv',
 # allows us to choose the encoding of the file in output
 'FEED_EXPORT_ENCODING' : 'utf-8',
 # allows us to choose the name of the file in output
 'FEED_URI' : 'Locations_Com_Out_10.csv',
 'DEFAULT_REQUEST_HEADERS': {
 # prepares the user-agent, the id of the program while it scraps information from the website

 'User-agent' : 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:62.0) Gecko/20100101 Firefox/62.0',
 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'Accept-Language': 'fr,fr-FR;q=0.8,en-US;q=0.5,en;q=0.3'},
 }
 # defines the web page where our spider starts scraping
 start_urls = ['https://www.leboncoin.fr/recherche/?category=10&real_estate_type=1,2']
 # specifies the domain of the website to scrap using this specific spider
 allowed_domains = ['leboncoin.fr']

 41

 # calls the user-agent that is specified in the settings of our spider
 ua = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:62.0) Gecko/20100101 Firefox/62.0'

 # allows us to get the date and time for each scraped item
 def __init__(self, aDate = pendulum.today()):
 super(Locations, self).__init__()
 self.aDate = aDate
 self.timestamp = self.aDate.timestamp()
 print("PENDULUM UTC TODAY", self.aDate.today())
 print("PENDULUM UTC TIMESTAMP TODAY ", self.timestamp)

 # allows us to use beautifulSoup, a python library used to pull data from webpages
 def clean_html(self, html_text):
 soup = BeautifulSoup(html_text, 'html.parser')
 return soup.get_text()

 # launches the first request, using the start url defined earlier
 def start_requests(self):
 for url in self.start_urls:
 yield scrapy.Request(url=url, callback = self.parse_page)

 # allows us to build the url of each township we want to scrap information about
 def parse_page(self, response):
 # we first import the csv containing the names and postal codes of the townships we wish to get
information on
 csvcible1 = pd.read_csv('All_Com_IN_6.csv')
 # then, for each row in our input file (csvcible1) we build the url according to leboncoins' structure :
 for index, row in csvcible1.iterrows():
 # ligne1 will host the ID_URL value for the selected row; ID_URL is the concatenation of the name of
the township(for exemple "Paris"), of "_" and of its postal number (for exemple "75001") so that the output
fits leboncoins' structure ("Paris_75001")
 ligne1 = row["ID_URL"]
 # csvinsee is calling "LAU2_" , which is the insee code of the selected township; this code is of no
use for scraping but must be kept in order to use it later for merging purposes
 csvinsee = row["LAU2_"]
 print(ligne1)
 print(csvinsee)
 # urllen creates, by concatenation, a fake url that could be similar to one of Leboncoin containing all
the offers for a specific township. If this url already exists in Leboncoin, it will possible to go further and
scrap the data that it contains. If this URL doesn't exist, the program will skip to the next line of the input
document
 urllen = 'https://www.leboncoin.fr/recherche/?category=10&locations=' + ligne1 + '&real_estate_type=1,2'
 print(urllen)
 yield scrapy.Request(url=urllen, callback=self.parse_nbpages, meta={"ligne1": ligne1,
 "csvinsee": csvinsee})

 # this function allows us to look for the right number of pages, to avoid leaving out offers and to avoid
scraping
 # empty pages (see Leboncoin documentation)
 def parse_nbpages (self, response):
 # first, we call back previous information (the "ID_URL" and the insee code from the previous function
 ligne1 = response.meta['ligne1']
 csvinsee = response.meta['csvinsee']
 # we start scraping information : here, the number of offers per township
 nbannonces = str(' '.join(response.xpath('//p/span[@class="_2ilNG"]/text()').extract()).replace(" ", ""))
 # we change the format of the information scraped to "integer' to reuse it easier
 nbpages = int(nbannonces)
 print(nbpages)
 # we divide the number of offers by 35 (the maximum number of offers by offers page) and we add 2 to
also have
 # the offers that could be on the last page with less than 35 offers
 nbpages = round(nbpages/35)+2
 print(nbpages)
 # this loop is used to obtain, for each offers page, the correct number of url that will be needed for the
rest of the scraping
 for p in range(1,nbpages):
 print(p)
 # the scraped url here is modified to stretch the search for the maximum number of offers page as far
as there arer still offers pages for each specific township
 urls = 'https://www.leboncoin.fr/recherche/?category=10&locations=' + ligne1 + '&real_estate_type=1,2'+\
 '&page='+ str(p)
 yield scrapy.Request(url = urls, callback = self.parse, priority=1, meta= {"ligne1" : ligne1,
 "csvinsee":csvinsee})

 42

 # This function allows us to get the exact number of offers per offers page, to get the url of each individual
offer, and to make sure that said offer has not been scraped before
 def parse(self, response):
 # the "clearfix trackable object is the unique id of each offer, and is used to create the unique URL of
each offer on Leboncoin
 extra = response.xpath('//a[@class="clearfix trackable"]/@href').extract()
 ligne1 = response.meta['ligne1']
 csvinsee = response.meta['csvinsee']
 for i in extra:
 # by concatenation, we bring together leboncoin standard url start ""https://www.leboncoin.fr" and
the unique id (the "clearfix trackable" mention before) to get the unique offers' URL
 url2 = "https://www.leboncoin.fr"+i
 annonce = AnnoncesRental()
 annonce['url'] = url2
 annonce['ID_URL'] = ligne1
 print(url2)
 # we check if this offer has been scraped before by using the url we have just created. If it has, it is
ignored, if is not be scraped before, it is scraped now
 if url2 not in open('Locations_Com_Out_8.csv', encoding='utf8').read():
 yield scrapy.Request(url=url2, callback=self.parse_annonce,meta={"annonce": annonce,
 "csvinsee": csvinsee})
 else:
 print("Dejà scrapé")

 # this last function scraps the information we need from each offer and prepares it to be added to the
output csv
 def parse_annonce(self, response):

 # we call information gathered or created previously in the program
 annonce = response.meta['annonce']
 csvinsee = response.meta['csvinsee']

 # we specify if the advertised good is for sale or for rent and create a new column in the output csv that
contains that information
 annonce['typetransaction'] = "Location"

 # using the input csv, whe get the insee code of the township in which is located the good mentioned in
the offer
 annonce['insee'] = csvinsee

 # scraping the title of the offer
 annonce['annoncet'] = ' '.join(response.xpath('//h1[@class="_246DF _2S4wz"]/text()').extract()).replace(";"," ")

 # scraping the rental price of the good
 annonce['logprix'] = response.xpath('//span[@class ="_1F5u3"]/text()').extract()[0]

 # scraping the full text that the user typed to describe the good
 annonce['descr'] = ' '.join(response.xpath('//span[@class ="content-CxPmi"]/text()').extract()).replace(";"," ")

 # time and date of the scraping of the this particular offer
 annonce['scrapdate'] = self.aDate.today().to_date_string().replace("-","/")
 annonce['scrapheure'] = self.aDate.today().to_time_string() #.replace(":","/")

 # scraping if there are any additional fees (electricty, water, etc. not included in the rental price
 annonce['logcharges'] = response.xpath('//div[@class="_2B0Bw _1nLtd"]//text()').extract()[1]

 # scraping what type of good it is (house or apartment)
 annonce['logtypebien'] = response.xpath('//div[@data-qa-id="criteria_item_real_estate_type"]/div/div[2]/text()')\
 .extract()

 # scraping the number of rooms
 annonce['lognbpieces'] = response.xpath('//div[@data-qa-id="criteria_item_rooms"]/div/div[2]/text()').extract()

 # scraping the area of the good (in square meters)
 annonce['logsurface'] = ' '.join(response.xpath('//div[@data-qa-id="criteria_item_square"]/div/div[2]/text()')\
 .extract())[:-2]

 # scraping the energy class of the good ("A", "B", "C", "D", "E", "F" or "G")
 annonce['energieclass'] = response.xpath('//div[@class="_2Fdg_1kx3G"]/div[contains(@class,"_1sd0z")]/text()')\
 .extract()

 # scraping the Greenhouse gas emission category if the good ("A", "B", "C", "D", "E", "F" or "G")
 annonce['energieges'] = response.xpath('//div[@class="_2Fdg- QGdfG"]/div[contains(@class,"_1sd0z")]/text()')\
 .extract()

 43

 # scraping the time where the offer was submitted
 annonce['annonceh'] = ' '.join(response.xpath('//div[@data-qa-id="adview_date"]/text()').extract())[-5:]

 # scraping the date where the offer was submitted
 annonce['annonced'] = ' '.join(response.xpath('//div[@data-qa-id="adview_date"]/text()').extract())[:10]

 # for a few particular townships, it was necessary to specify exceptions in order to be able to scrap
them
 # It was also believed necessary to obtain in the output file the name in full caps of each township
scraped
 listeSaints = ('Lieusaint','Saints','Saintry-sur-Seine', 'Saintlieu', 'Saint-Symphorien-le-Château',
 'Saint-Maur-de-Fossés', 'Saints', "Saint-Cyr-l'Ecole")
 if response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] not in listeSaints:
 annonce['logville'] = response.xpath('//div[@data-qa-id="adview_location_informations"]//text()')\
 .extract()[0]\
 .replace("á", "a").replace("à", "a").replace("â", "a").replace("ä", "a") \
 .replace("é", "e").replace("è", "e").replace("ê", "e").replace("ë", "e") \
 .replace("í", "i").replace("ì", "i").replace("î", "i").replace("ï", "i") \
 .replace("ó", "o").replace("ò", "o").replace("ô", "o").replace("ö", "o") \
 .replace("ú", "u").replace("ù", "u").replace("û", "u").replace("ü", "u") \
 .replace("'", " ").replace("-", " ").replace("É", "e").replace("ç", "c") \
 .replace("Ç ","c").replace("Ÿ","Y").replace("ÿ","y").replace("Î","I")\
 .upper().replace(" SAINT "," ST ").replace(" SAINTS "," ST ").replace("-SAINT ", "-ST ")\
 .replace("-SAINTS ", "-ST ").replace(" SAINT-"," ST-").replace(" SAINTS-"," ST-") \
 .replace("-SAINT-", "-ST-").replace("-SAINTS-", "-ST-").replace("SAINT","ST")\
 .replace("SAINTS","ST")
 elif response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] in listeSaints:
 annonce['logville'] = response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] \
 .replace("á", "a").replace("à", "a").replace("â", "a").replace("ä", "a") \
 .replace("é", "e").replace("è", "e").replace("ê", "e").replace("ë", "e") \
 .replace("í", "i").replace("ì", "i").replace("î", "i").replace("ï", "i") \
 .replace("ó", "o").replace("ò", "o").replace("ô", "o").replace("ö", "o") \
 .replace("ú", "u").replace("ù", "u").replace("û", "u").replace("ü", "u") \
 .replace("Ç ","c").replace("'", " ").replace("-", " ").replace("É", "e").replace("ç", "c").upper()

 # finally, scraping the postal code of each offer
 annonce['logcodepost'] = str(response.xpath('//div[@data-qa-
id="adview_location_informations"]//text()').extract()[2]).zfill(5)

 yield annonce

################### SPIDER_SALES ####################

SPIDER
used to scrape only sales

list of required packages to successfully run the spider
from bs4 import BeautifulSoup
import scrapy
import cfscrape
from fake_useragent import UserAgent
import pendulum
import json
import random
from boncoin_project.items.Items import *
import csvkit
import pandas as pd

class Cities(scrapy.Spider):
 name = "cities"
 # specifying already existing settings, this part can filled out by the user
 custom_settings = {
 # gives the number of concurrent requests that will be run at the same time, to avoid detection on the
scraped website, it is best to use one request at a time
 'CONCURRENT_REQUESTS': '1',
 # allows us to set how long each request will take. If our program scraps too quickly, it might get
detected by the website security. For Leboncoin, two seconds for each request should work fine.
 'DOWNLOAD_DELAY': '2',
 'COOKIES_ENABLED': True,
 # HTTPERROR_ALLOWED_CODES allows certain errors, meaning the program keeps running after
encountering them
 'HTTPERROR_ALLOWED_CODES': [404],
 'FEED_EXPORTERS': {

 44

 'csv': 'scrapy.exporters.CsvItemExporter'},
 # allows us to choose the type of file that is produced in output by the program
 'FEED_FORMAT': 'csv',
 # allows us to choose the encoding of the file in output
 'FEED_EXPORT_ENCODING': 'utf-8',
 # allows us to choose the name of the file in output
 'FEED_URI': 'All_Com_OUT_11.csv',
 # prepares the user-agent, the id of the program while it scraps information from the website
 'DEFAULT_REQUEST_HEADERS': {
 'User-agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:62.0) Gecko/20100101 Firefox/62.0',
 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'Accept-Language': 'fr,fr-FR;q=0.8,en-US;q=0.5,en;q=0.3'},
 }
 # defines the web page where our spider starts scraping
 start_urls = ['https://www.leboncoin.fr/recherche/?category=9&locations=d_75&real_estate_type=1,2,3']
 # specifies the domain of the website to scrap using this specific spider
 allowed_domains = ['leboncoin.fr']

 # calls the user-agent that is specified in the settings of our spider
 ua = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:62.0) Gecko/20100101 Firefox/62.0'

 # allows us to get the date and time for each scraped item
 def __init__(self, aDate=pendulum.today()):
 super(Cities, self).__init__()
 self.aDate = aDate
 self.timestamp = self.aDate.timestamp()
 print("PENDULUM UTC TODAY", self.aDate.today())
 print("PENDULUM UTC TIMESTAMP TODAY ", self.timestamp)
 # binary = FirefoxBinary('path/to/binary')
 # self.driver = webdriver.Firefox(firefox_binary=binary)

 # allows us to use beautifulSoup, a python library used to pull data from webpages
 def clean_html(self, html_text):
 soup = BeautifulSoup(html_text, 'html.parser')
 return soup.get_text()

 # launches the first request, using the start url defined earlier
 def start_requests(self):
 for url in self.start_urls:
 yield scrapy.Request(url=url, callback=self.parse_page)

 # allows us to build the url of each township we want to scrap information about
 def parse_page(self, response):
 # we first import the csv containing the names and postal codes of the townships we wish to get
information on
 csvcible1 = pd.read_csv('All_Com_IN_6.csv')
 # then, for each row in our input file (csvcible1) we build the url according to leboncoins' structure :
 for index, row in csvcible1.iterrows():
 # ligne1 will host the ID_URL value for the selected row; ID_URL is the concatenation of the name of
the township(for exemple "Paris"), of "_" and of its postal number (for exemple "75001") so that the output
fits leboncoins' structure ("Paris_75001")
 ligne1 = row["ID_URL"]
 # csvinsee is calling "LAU2_" , which is the insee code of the selected township; this code is of no
use for scraping but must be kept in order to use it later for merging purposes
 csvinsee = row["LAU2_"]
 print(ligne1)
 print(csvinsee)
 # urllen creates, by concatenation, a fake url that could be similar to one of Leboncoin containing all
the offers for a specific township. If this url already exists in Leboncoin, it will possible to go further and
scrap the data that it contains. If this URL doesn't exist, the program will skip to the next line of the input
document
 urllen = 'https://www.leboncoin.fr/recherche/?category=9&locations=' + ligne1 + '&real_estate_type=1,2'
 print(urllen)
 yield scrapy.Request(url=urllen, callback=self.parse_nbpages, meta={"ligne1": ligne1,
 "csvinsee": csvinsee})

 # this function allows us to look for the right number of pages, to avoid leaving out offers and to avoid
scraping empty pages (see Leboncoin documentation)
 def parse_nbpages(self, response):
 # first, we call back previous information (the "ID_URL" and the insee code from the previous function
 ligne1 = response.meta['ligne1']
 csvinsee = response.meta['csvinsee']
 # we start scraping information : here, the number of offers per township
 nbannonces = str(' '.join(response.xpath('//p/span[@class="_2ilNG"]/text()').extract()).replace(" ", ""))
 # we change the format of the information scraped to "integer' to reuse it easier

 45

 nbpages = int(nbannonces)
 print(nbpages)
 # we divide the number of offers by 35 (the maximum number of offers by offers page) and we add 2 to
also have the offers that could be on the last page with less than 35 offers
 nbpages = round(nbpages / 35) + 2
 print(nbpages)
 # this loop is used to obtain, for each offers page, the correct number of url that will be needed for the
rest of the scraping
 for p in range(1, nbpages):
 print(p)
 # the scraped url here is modified to stretch the search for the maximum number of offers page as far
as there arer still offers pages for each specific township
 urls = 'https://www.leboncoin.fr/recherche/?category=9&locations=' + ligne1 + '&real_estate_type=1,2' + \
 '&page=' + str(p)
 yield scrapy.Request(url=urls, callback=self.parse, priority=1, meta={"ligne1": ligne1,
 "csvinsee": csvinsee})

 # This function allows us to get the exact number of offers per offers page, to get the url of each individual
offer, and to make sure that said offer has not been scraped before
 def parse(self, response):
 # the "clearfix trackable object is the unique id of each offer, and is used to create the unique URL of
each offer on Leboncoin
 extra = response.xpath('//a[@class="clearfix trackable"]/@href').extract()
 ligne1 = response.meta['ligne1']
 csvinsee = response.meta['csvinsee']
 for i in extra:
 # by concatenation, we bring together leboncoin standard url start ""https://www.leboncoin.fr" and
the unique id (the "clearfix trackable" mention before) to get the unique offers' URL
 url2 = "https://www.leboncoin.fr" + i
 annonce = AnnoncesSale()
 annonce['url'] = url2
 annonce['ID_URL'] = ligne1
 print(url2)
 # we check if this offer has been scraped before by using the url we have just created. If it has, it is
ignored, if is not be scraped before, it is scraped now
 if url2 not in open('Ventes_Com_Out_7.csv', encoding='utf8').read():
 yield scrapy.Request(url=url2, callback=self.parse_annonce, meta={"annonce": annonce,
 "csvinsee": csvinsee})
 else:
 print("Dejà scrapé")

 # this last function scraps the information we need from each offer and prepares it to be added to the
output csv
 def parse_annonce(self, response):

 # we call information gathered or created previously in the program
 annonce = response.meta['annonce']
 csvinsee = response.meta['csvinsee']

 # we specify if the advertised good is for sale or for rent and create a new column in the output csv that
contains that information
 annonce['typetransaction'] = "Vente"

 # using the input csv, whe get the insee code of the township in which is located the good mentioned in
the offer
 annonce['insee'] = csvinsee

 # scraping the title of the offer
 annonce['annoncet'] = ' '.join(response.xpath('//h1[@class="_246DF _2S4wz"]/text()').extract()).replace(";",
 " ")

 # scraping the price of the good for sale
 annonce['logprix'] = response.xpath('//span[@class ="_1F5u3"]/text()').extract()[0]

 # scraping the full text that the user typed to describe the good
 annonce['descr'] = ' '.join(response.xpath('//span[@class ="content-CxPmi"]/text()').extract()).replace(";"," ")

 # time and date of the scraping of the this particular offer
 annonce['scrapdate'] = self.aDate.today().to_date_string().replace("-", "/")
 annonce['scrapheure'] = self.aDate.today().to_time_string() # .replace(":","/") (SI BESOIN)

 # scraping if they are fees associated with the transaction ("YES", "NO", "No data")
 annonce['loghonoraires'] = response.xpath('//div[@data-qa-id="criteria_item_fai_included"]/div/div[2]/text()') \
 .extract()
 # scraping what type of good it is (house or apartment)

 46

 annonce['logtypebien'] = response.xpath('//div[@data-qa-id="criteria_item_real_estate_type"]/div/div[2]/text()') \
 .extract()

 # scraping the number of rooms
 annonce['lognbpieces'] = response.xpath('//div[@data-qa-id="criteria_item_rooms"]/div/div[2]/text()').extract()

 # scraping the area of the good (in square meters)
 annonce['logsurface'] = ' '.join(response.xpath('//div[@data-qa-id="criteria_item_square"]/div/div[2]/text()')
 .extract())[:-2]

 # scraping the energy class of the good ("A", "B", "C", "D", "E", "F" or "G")
 annonce['energieclass'] = response.xpath('//div[@class="_2Fdg-
_1kx3G"]/div[contains(@class,"_1sd0z")]/text()') \
 .extract()

 # scraping the Greenhouse gas emission category if the good ("A", "B", "C", "D", "E", "F" or "G")
 annonce['energieges'] = response.xpath('//div[@class="_2Fdg- QGdfG"]/div[contains(@class,"_1sd0z")]/text()') \
 .extract()

 # scraping the time where the offer was submitted
 annonce['annonceh'] = ' '.join(response.xpath('//div[@data-qa-id="adview_date"]/text()').extract())[-5:]

 # scraping the date where the offer was submitted
 annonce['annonced'] = ' '.join(response.xpath('//div[@data-qa-id="adview_date"]/text()').extract())[:10]

 # for a few particular townships, it was necessary to specify exceptions in order to be able to scrap
them
 # It was also believed necessary to obtain in the output file the name in full caps of each township
scraped
 listeSaints = ('Lieusaint', 'Saints', 'Saintry-sur-Seine', 'Saintlieu', 'Saint-Symphorien-le-Château',
 'Saint-Maur-de-Fossés', 'Saints', "Saint-Cyr-l'Ecole")
 if response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] not in listeSaints:
 annonce['logville'] = response.xpath('//div[@data-qa-id="adview_location_informations"]//text()') \
 .extract()[0] \
 .replace("á", "a").replace("à", "a").replace("â", "a").replace("ä", "a") \
 .replace("é", "e").replace("è", "e").replace("ê", "e").replace("ë", "e") \
 .replace("í", "i").replace("ì", "i").replace("î", "i").replace("ï", "i") \
 .replace("ó", "o").replace("ò", "o").replace("ô", "o").replace("ö", "o") \
 .replace("ú", "u").replace("ù", "u").replace("û", "u").replace("ü", "u") \
 .replace("'", " ").replace("-", " ").replace("É", "e").replace("ç", "c") \
 .replace("Ç ", "c").replace("Ÿ", "Y").replace("ÿ", "y").replace("Î", "I") \
 .upper().replace(" SAINT ", " ST ").replace(" SAINTS ", " ST ").replace("-SAINT ", "-ST ") \
 .replace("-SAINTS ", "-ST ").replace(" SAINT-", " ST-").replace(" SAINTS-", " ST-") \
 .replace("-SAINT-", "-ST-").replace("-SAINTS-", "-ST-").replace("SAINT", "ST") \
 .replace("SAINTS", "ST")
 elif response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] in listeSaints:
 annonce['logville'] = response.xpath('//div[@data-qa-id="adview_location_informations"]//text()') \
 .extract()[0] \
 .replace("á", "a").replace("à", "a").replace("â", "a").replace("ä", "a") \
 .replace("é", "e").replace("è", "e").replace("ê", "e").replace("ë", "e") \
 .replace("í", "i").replace("ì", "i").replace("î", "i").replace("ï", "i") \
 .replace("ó", "o").replace("ò", "o").replace("ô", "o").replace("ö", "o") \
 .replace("ú", "u").replace("ù", "u").replace("û", "u").replace("ü", "u") \
 .replace("Ç ", "c").replace("'", " ").replace("-", " ").replace("É", "e").replace("ç", "c").upper()

 # finally, scraping the postal code of each offer
 annonce['logcodepost'] = str(response.xpath('//div[@data-qa-id="adview_location_informations"]//text()')
 .extract()[2]).zfill(5)

 yield annonce

 47

References

Main R packages used in the framework of the Housing Dynamics project

R. Ysebaert, ‘housing’ : This package created for the project imports reference layers for all

the case studies of the ESPON Housing dynamics project (Paris, Avignon, Barcelona,
Madrid, Palma de Majorque, Warsaw, Lodz, Krakow and Geneva). The mapping
functions implemented allow to create an ESPON map with all the required styles
(colors, labels, etc.)

Giraud T. Lambert N., ‘cartography’ : This package is used to create and integrate maps in

R workflows. This package helps to design cartographic representations such as
proportional symbols, choropleth, typology, flows or discontinuities maps. It also
offers several features that improve the graphic presentation of maps, for instance,
map palettes, layout elements (scale, north arrow, title...).

Giraud T, Commenges H., ‘SpatialPosition’ : Description: Computes spatial position models:

Stewart potentials, Reilly catchment areas, Huff catchment areas.

Pebesma et al. ‘sf’ : Support for simple features, a standardized way to encode spatial vector

data. Binds to 'GDAL' for reading and writing data, to 'GEOS' for geometrical
operations, and to 'PROJ' for projection conversions and datum transformations.

Wickham H., ‘dplyr’, A grammar for Data Manipulation. A fast, consistent tool for working

with data frame like objects, both in memory and out of memory

ESPON 2020 – More information

ESPON EGTC
4 rue Erasme, L-1468 Luxembourg - Grand Duchy of Luxembourg
Phone: +352 20 600 280
Email: info@espon.eu
www.espon.eu, Twitter, LinkedIn, YouTube

The ESPON EGTC is the Single Beneficiary of the ESPON 2020 Cooperation
Programme. The Single Operation within the programme is implemented by the ESPON
EGTC and co-financed by the European Regional Development Fund, the EU Member
States and the Partner States, Iceland, Liechtenstein, Norway and Switzerland.

