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1 Introduction  

This technical guidance document describes and demonstrates the methodological 

framework applied to produce the ESPON EGTC Big Data for Territorial Analysis of Housing 

Dynamics 2018-19 study, delivered as the Wellbeing of European citizens regarding the 

affordability of housing report.  

While in European larger cities, decent and affordable housing is increasingly hard to get 

access to, the main goals of the study were: 

(1) to set up the framework towards the production of neighborhood and local spatial 

data;  

(2) to implement the framework with harmonized indicators, to examine the unequal 

spatial patterns of housing affordability in Europe;  

(3) to do it in a way that allows to compare between cities and within cities.  

Its policy-oriented broader thinking is to analyze the spatial patterns of unequal local 

affordability, as framed by the Action Plan of the Partnership on Housing of the EU Urban 

Agenda that pushes for improved knowledge regarding affordability of housing. 

The report addresses the housing elements of European policies through one major 

issue: affordability, a concept defined as a gap between housing prices and households’ 

income (Friggit, 2017), and this gap has widened during the last decades. Since the 1990s, 

housing prices have on average increased faster than the income of residents and buyers in 

major post-industrial city-regions, but this is not ubiquitous. The scientific and policy goals of 

the study aim at informing and locally mapping the increased affordability gap, a critical issue 

for social cohesion and sustainability in metropolitan areas in Europe that impacts the well-

being of residents in European cities. To do so, the guidance document aims at 

discussing the data collection and data models used for the production of the 

delivered maps and data: 

• The “Wellbeing of European citizens regarding the affordability of housing” datasets 

have been produced to analyse and map affordability in a selection of European 

cities.  

• The report combines institutional data, and data harvested on real-estate 

advertisement websites. The issues with collecting and harmonizing such 

heterogeneous data sources (conventional and unconventional data) are discussed, 

as well as the methodology proposed to bridge such datasets. 

• The datasets delivered are structured as spatial data with harmonized indicators that 

allow to compare between cities and within cities, to examine the unequal 

spatial patterns of housing affordability.  
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• From the harmonized database, the study focuses on 9 case studies that cover a 

range of cities: from global and capital cities, down to medium-sized cities. Case 

studies offer a variegated sample, with several dynamics regarding housing market 

(gentrification process, tourism presence, housing crisis, etc.). Highlighting these 

various and complementary situations is relevant to carry out a first international and 

comparative study on housing dynamics in Europe based on local indicators. This 

guidance document will highlight the technical choices made to compare the 

indicators between cities in different countries. 

The guidance document describes the data selection, harvesting and analysis process. It is 

structured as follows:  

- Section 2 overviews the conceptual and theoretical model used for standardisation 

and delivery of aggregated datasets, as well as data sources gathered, and described 

in the wellbeing report.  

- Section 3 describes the data model and provides a description of the data collection 

and harmonisation processes. It discusses the technical choices and procedures for 

data harvesting, as well as the procedures for data harmonisation. This section gives 

insights on how results are technically produced and delivered, by the means of a 

workable example, elaborated with the Paris case study. This section of the 

guidance document is structured according to the workflow of the analysis, and 

narratively describes methods and R code used to implement the case study, in order 

to provide ESPON, stakeholders and policymakers with the conditions of 

reproducibility and transferability of the methodology used.1 

- Section 4 summarizes methodological and conceptual outputs and elaborate on next 

steps for further studies.  

- Several appendices complement the Technical Guidance Document, and are made 

available with the final delivery, for the sake of reproducibility and transferability: they 

include (1) an annex on harvesting data, with Python language libraries; (2) full 

code for the preparation of case-studies (R language), (3) a workable smaller 

example to demonstrate the diverse procedures used (RMarkdown html document) 

developed as a prototype demonstrator of the libraries and packages used for the 

project.2 

                                                 
1 Most programs used to prepare this report have been written in the R language, using a series of 
packages that are documented in the Guidance document. R language is now a widely adopted open-
sourced standard programming language in spatial analysis, big data analysis, and statistics. Harvesting 
websites also required the use of Python language (see Annex 1) 

2 Full code in the R language is provided as used in data and spatial analysis (http://bit.ly/2XGEhiD).  
Readers may also refer to an .html file, a RMarkdown document consisting in an archive of preliminary 
stages of the project developments (D1_Draft_outline_guidance_document.html). This file was 
constructed as a workable prototype example of the main packages used to produce analyse the 
datasets and harvest data.  

http://bit.ly/2XGEhiD
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2 Outlines of the conceptual and theoretical model 

Starting with an explicit theoretical framework of affordability, the design of a harmonised data 

structure is not an easy process and must follow specific methods and procedures. One issue 

consists in defining an adapted methodology for combining conventional and unconventional 

data sources. Another is to describe harmonisation procedures, which are not only technical, 

but also conceptual. This section summarises some conceptual and theoretical elements that 

are further elaborated in the Wellbeing Report, so as to introduce the technical choices of the 

final data design. 

2.1 Theoretical model 

The theoretical model underlying the study starts with the problem of home values and market 

values, and the widening gap compared to income (Aalbers, 2016; Friggit, 2017). The 

theoretical framework from which we elaborate on stems an overarching conceptualisation of 

affordability as part of a feedback loop between residential markets, value, assets, 

wealth and vulnerability, thoroughly developed in Le Goix et al. (2019a); Le Goix et al. 

(2019b). This theoretical framework is detailed in the Wellbeing report, section 1.2 and 1.3. 

The report describes to effort towards collecting, documenting (metadata) local spatial 

datasets to spatially analyse some critical issues: 

- The increased affordability gap, a critical issue for social cohesion sustainability in 

metropolitan areas in Europe. 

- The unequal access to housing markets. 

- The increased inequalities stemming from declining affordability (i.e. higher price to 

income ratio) 

 

2.2 Harmonizing conventional and unconventional data to analyze the 
well-being  

One major issue is the lack of harmonised spatial data to map and monitor affordability 

in Europe. There are plenty of institutional (tax, census), private (real-estate agents and 

websites) and national or local data (parcels, local tax rolls). These are not harmonised and 

interoperable. As demonstrated in the Wellbeing report (section 2.1), data by OECD and 

Eurostat are disseminated respectively at the national and at the city levels, but the dataset 

are far from complete in terms of thematic and geographical objects available to accurately 

analyze housing dynamics. To bridge this data gap at the local level (LAU2 and FUA), we 

collected and combined different spatial datasets and surveys which have so far been 

employed separately. One issue consisted in defining an adapted methodology for 

combining conventional and unconventional data sources.  

                                                                                                                                            
 



 

 4 

 

 

Definition of conventional and unconventional data 

(quoted from the Wellbeing report, section 3). 

Conventional data are provided by traditional statistical offices. This information, usually collected at 

the individual scale and disseminated at several geographical aggregates, is subject to robust 

processes of harmonisation and validation, by means of explicit conceptualisation of the future usage of 

the data collected. Conventional data are usually realised through vintages (like censuses), but rely on 

robust survey, samples and inferential statistics methodologies. Such data are disseminated with explicit 

description of the fields and variable construction, definitions, sampling procedures, and statistical 

robustness. 

Unconventional data are extracted from various platforms and sources, and are often named “big 

data”. Some might come from institutions, and are datasets collected for various administrative, fiscal 

reasons, but that were not originally designed for socio-economic or demographic research. In many 

ways, we incorporate them in research whereas such datasets have not been designed and/or 

documented to do so (lack of metadata). Although originating from institutions, their robustness, as well 

as inference on how such data describe the general population can often be questioned.  

Many unconventional datasets are also derived from harvested data, made available by ISP (Internet 

Service Providers) by the means of API, or scraped. Such unconventional data are often viewed as 

interesting proxies to measure, and better understand spatial behaviors and territorial dynamics (Gallotti 

et al.; Kitchin, 2013), and also as a means of providing higher spatio-temporal resolution data when 

compared to institutional data sources (FP7 EUNOIA final report, 2015).  
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3 Technical section: case-study analysis 

For the purpose of the Wellbeing of European citizens regarding the affordability of housing 

report we go beyond the aggregated territorial levels to understand intra-urban inequalities 

between the cities. In term of data creation processing, three challenges have been 

addressed in this research: 

(1) Ensuring a data process which can be reproducible and transferable. It was mainly 

done through and important documentation and programming codes. 

(2) Delivering comparable and harmonised indicators for the selected cities and case 

studies, 2 geographical levels are used to aggregate the collected data: the LAU2 

level, and the 1km European reference grid.  

(3) Covering the entire Functional Urban Areas, despite missing data and incomplete 

datasets (mainly due to the absence of real-estate transactions or offers in the 

periphery of FUA, which are mainly rural areas).  

This section describes and demonstrates how we address each of these challenges, the 

technical solutions implemented, and the data analysis design. All code for the study is made 

available with the final delivery of the report. See “Programs” folder, containing R files, 

delivered as a report appendix3. The “Appendices” section of this document contains Python 

code used for scraping purposes in France.  

 

3.1 Transferability and reproducibility of the study: a narrative of a 
case-study analysis (Paris) 

We elaborate on the case-study of Paris as an ideal case study because of the availability of 

institutional data4. We consider a variety of datasets:  

- public conventional census data,  

- unconventional institutional datasets, property-level data from the Paris Chamber of 

Notaries (1996-2012, a sample of 1 million rows),  

- unconventional harvested big data sources (real estate websites).  

                                                 
3  https://sharedocs.huma-num.fr/wl/?id=LPBWZm39VsZpXWnqIi9Q9HiTu0p5j9cF 

4  The final guidance document describes the full methodology as a narrative summarizing the 

data process and R code used from a complete case study. It differs from interim deliveries, that were 

based on a prototype analysis designed as a RMarkdown document (Interim Delivery on Yvelines), 

provided to describe and reproduce the overall workflow of analysis targeted. This interim document is 

available online: 

https://www.espon.eu/sites/default/files/attachments/Guidance_Document_201900426.pdf 
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Harmonised and standardised variables are proposed, down to the local level (1 km grid). 

Methods are applied to a set of geospatial data available. Section 3.3 documents the R 

language code written for the purpose of the analysis: the goal is to demonstrate the 

transferability and reproducibility of the methodology. The open-source R statistical 

software uses open-source packages, that are well documented and maintained, and is 

considered a standard environment in massive geospatial data analysis. By documenting the 

R code with this narrative section, we document how the methodological framework has been 

made transferable. It has been implemented with data from other case-studies to prepare 

maps and visualisations for the Wellbeing report, availability of datasets permitting 

(transaction data namely). In other words, all the indicators produced for each case-studies 

stem from the same methodology, and are therefore made fully comparable within cities and 

across cities.   

Figure 3.1 - Overview of the workflow. 
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In this section, we deliver a methodological narrative, in order:  

- To describe the data collection process, both for conventional and unconventional 

data sources. 

- To describe and document the methodology employed to harvest datasets, using 

APIs, and R packages s.a. `Cartography`, `SpatialPostion`, `rvest`, and `httr`, so as to 

ensure reproducibility and transferability of the protocols. 

- To describe a set of harmonised variables. Harmonised variables should be made 

comparable between European cities, within cities and when data are available over 

time. Ratios and standardized indices, such as affordability ratio are considered as 

valuable alternatives to rough stock variables (s.a. price, surface), that are structurally 

contingent to each country, city and local market contexts. 

- To correct spatial and temporal data gap. Spatio-temporal information is sensitive to 

two types of sampling issues: in space, and in time, therefore requiring the use of 

interpolation procedures to ensure the quality and representativeness of the spatial 

information produced. Spatial interpolation procedures are described, using for 

instance the `Spatialposition` R Package. 

To illustrate the project workflow, the narrative displayed in Chapter 3 aims at covering the 

most important methodological aspects of harmonised data creation on real-estate market 

(Figure 3.1) : 

1. Data sources and data cleaning – A first issue highlighted is data collection from 

the relevant information/data providers to target harmonized indicators. Conventional 

census data are required to extract information at EU level on socio-economic 

characteristics of case-studies and collect data on income, fundamental for estimating 

real-estate affordability (Section 3.1). Institutional unconventional data are required to 

describe residential property markets (Section 3.2). Data harvesting and web-

scraping (Section 3.3) has been critical in overcoming the situation where transaction 

data simply does not exist. Where official transaction data exists, harvested data 

allows to document the real-estate market offer (both property and rental market) vs. 

actual transactions. 

2. Harmonised indicators provision – Section 3.4 covers the design of harmonised 

variables in a multiscalar perspective, produced at the local fine-grain geographical 

city level (grid and LAU2) and the level of the entire FUA. Many are produced by 

bridging institutional and census data. 

3. Spatial harmonisation – Most of the indicators have been delivered at the LAU2 

level. Section 3.5 explains the methodology and the interest to go beyond this 

territorial level relevant for policy making by aggregating and interpolating the results 



 

 8 

in a 1km INSPIRE grid. This methodology offers a lot of advantages: by the means of 

interpolation/smoothing techniques, we control for outliers and errors in the input 

datasets. It also allows to better control for the MAUP effects (take into account the 

number of real-estate offers/transactions in the calculation of price/square meters), it 

estimates missing values using the assumption of spatial autocorrelation of real-

estate values. It finally allows to go beyond the LAU2 level which is basically too large 

for observing existing inequalities for some cities defined by large territorial units, 

such as Barcelona or Warsaw.   

4. Data sources combination. Section 3.6 displays promising results for Paris and 

Barcelona where some extra-combinations between unconventional data sources 

have been tested for the sake of data exploration: real-estate offers (transaction 

data in Paris, real-estate offer in Barcelona) and other big data source, like Airbnb. 

Maps of statistical residuals produced clearly show the effect of Airbnb presence on 

real-estate market (less offers than expected, all things being equal to the density of 

real-estate offers or transactions) in touristic quarter (Center or Montmartre in Paris, 

La Rambla in Barcelona).    

This guidance document is concluded with highlights on how such data, maps and 

interpretation realised have been aggregated together to produce harmonized indicators and 

analysis at the three geographical levels of interest for this study, depending of data 

availability: local grids, LAU2, central cities, FUAs. 

 

3.2 Conventional institutional data: Eurostat and National Statistical 
Institutes indicators 

Two main categories of institutional data providers (“official statistics”) have been used: 

harmonised European statistics (Eurostat) and national statistics (data coming from National 

Statistical Institutes and Finance ministries). 

EU statistics (Urban statistics, Eurostat) have been used to globally characterise selected 

case-studies as regards to the other cities of Europe. Taking into account the availability of 

data, 20 indicators at Core City and 14 at FUA level (less available information) have been 

identified. These datasets include demographic indicators (age-structure), main households 

characteristics, information related to the employment (economy tertiary oriented or not) and 

other relevant factors to understand who lives in the cities. However, few information are 

available on housing. It is only possible to extract one item of the EU perception survey: “is it 

easy to find good housing in your city?”, which gives only a very rough qualitative assessment 

of  affordability by European citizens.  
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Table 3-1 – Listing of Eurostat available indicators relevant for characterising the housing market 

 

For measuring further comparable affordability indexes, the results of the EU-SILC survey 

have also been used. This is the reference source for comparative statistics on income 

distribution in the European Union. For this study, the first, the fifth (median) and the ninth 

decile of income distribution have been gathered. This kind of information can be further (cf. 

Section 3.4) used to analyse a time-normalised indicator of affordability (price to income 

ratio), i.e. answering the following question: “How long the 10% poorest/median/10% richest 

of the population have to work to buy/rent 1sq. kilometer in this city”?  The choice of 

thresholds has been made with regards to the needs for data standardisation to compare 

national affordability between cities of several countries, which is not the case with income 

statistics provided at local level by National Statistical Institutes.  

In fact, LAU2 income data have also been gathered. It is especially useful for discussing on 

affordability in a local context. A disclaimer shall however be disclosed regarding income 

data. It is not recommended to compare local situation of affordability between cities of 

several countries. Indeed, the methodologies for income computation varies from one country 

to another. The ways income is imputed to persons or households differ between countries: 

per capita or per households; before/after tax; with or without social benefits, etc. The 

statistical parameters for aggregated income also differs in institutional data, some a median, 

other are average income at LAU2 level. Nevertheless, local affordability indexes are still 

highly relevant for comparing local affordability between cities of the same country (Avignon-

Paris / Madrid, Barcelona-Palma de Mallorca / or Lodz-Warsaw-Krakow separately), the 

methodology of income calculation being generally harmonised at national level.   
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3.3 Using unconventional institutional data to analyze the dynamics on 
property markets: data, methods, sample results 

3.3.1 Unconventional institutional data: data from Paris Chamber of the Notaries 

We use property-level data from the Paris Chamber of Notaries (1996-2012), provided to the 

lead researcher by the Paris Notaries Services, a subsidiary of the Chamber of the Notaries, 

under a research agreement with the Paris Chamber of the Notaries5. This sample contains 

transactions for the region and its suburbs, within the administrative limits of Ile-de-France 

(roughly 1 million rows). All records contain information on the property amenities and pricing, 

and series of understudied interesting variable on sellers and buyers, such as age, sex, socio-

economic status, national origin, place of residence, and some credit history related to the 

transaction (95 indicators at transaction scale, cf R CODE 1).  

 

######################                      R CODE 1                    ####################### 
#Import BIEN database (Chamber of Notaries) and analyse 
dfdata <- read.csv("BIEN_LABEX_2016_consolidated_all_years.txt", stringsAsFactors=FALSE) 
> str(dfdata) 
'data.frame': 968695 obs. of  96 variables: 
 $ X.1        : int  1 2 3 4 5 6 7 8 9 10 ... 
 $ ID         : int  1 2 3 4 5 6 7 8 9 10 ... 
 $ ACONST     : int  NA NA NA 1996 1996 1996 1996 1996 1996 1996 ... 
 $ ANNAIS_AC  : int  1966 1967 1969 1961 1971 1945 1970 1937 1970 1973 ... 
 $ ANNAIS_VE  : int  NA NA NA NA NA NA NA NA NA NA ... 
 $ annee      : int  1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 ... 
 $ ANNEXE     : chr  "" "" "" "" ... 
 $ BATEAU     : chr  "" "" "" "" ... 
 $ BIARRON    : chr  "" "" "" "" ... 
 $ BICOMPADR  : chr  "ET 12" "ET 12" "ET 12" "zac des 2 golfs" ... 
 $ BICOMPNRVO : chr  "" "" "" "" ... 
 $ BIDEPT     : chr  "77" "77" "77" "77" ... 
 $ BILIBVOIEO : chr  "PAUL VALENTIN" "PAUL VALENTIN" "PAUL VALENTIN" "CHAMP DE LAGNY" ... 
 $ BINRQUARAD : chr  "" "" "" "" ... 
 $ BINRVOIE   : chr  "10" "10" "10" NA ... 
 $ BINUCOM    : chr  "5" "5" "5" "18" ... 
 $ BITYPVOIE  : chr  "RUE" "RUE" "RUE" "LD" ... 
 $ CAVE       : chr  "1" "0" "1" NA ... 
 $ CODNAT_AC  : chr  "F" "F" "F" "F" ... 
 $ CODNAT_VE  : chr  "F" "F" "F" "F" ... 
 $ CSP_AC     : chr  "60" "60" "60" "51" ... 
 $ CSP_VE     : chr  "" "" "" "" ... 
 $ DATDEBBAIL : chr  "" "" "" "" ... 
 $ DATMUTPREC : chr  "26/01/1995 00:00" "26/01/1995 00:00" "26/01/1995 00:00" "02/11/1995 00:00" ... 
 $ DEPENDANCE : chr  "" "" "" "" ... 
 $ DURBAIL    : chr  NA NA NA NA ... 
 $ ENCOMBRE   : chr  NA NA NA NA ... 
 $ ETAGE      : chr  "2" "2" "0" "2" ... 
 $ IMSURFTOTB : chr  NA NA NA NA ... 
 $ INDIVI_AC  : chr  "N" "I" "N" "N" ... 
 $ INDIVI_VE  : chr  "N" "N" "N" "N" ... 
 $ insee      : chr  "77005" "77005" "77005" "77018" ... 
 $ IRIS       : chr  "770050000" "770050000" "770050000" NA ... 
 $ LARGFAC    : chr  NA NA NA NA ... 
 $ LOYANNU    : chr  NA NA NA NA ... 
 $ mois       : int  6 5 7 3 3 3 3 3 3 3 ... 
 $ MTCRED     : chr  "59455" "63022" "51070" "74395" ... 
 $ NATNEGOC   : chr  "PR" "PR" "PR" "" ... 
 $ NBRBAT     : chr  NA NA NA NA ... 
 $ NBRCHSERV  : chr  "0" "0" "0" NA ... 
 $ NBRGARAGE  : chr  "0" "0" "0" "1" ... 
 $ NBRPIECE   : chr  "3" "3" "" "3" ... 
 $ NBRSALDB   : int  1 NA NA 1 1 1 1 1 1 1 ... 
 $ NIVEAU     : chr  NA NA NA NA ... 
 $ Nom_commune: chr  "Annet-sur-Marne" "Annet-sur-Marne" "Annet-sur-Marne" "Bailly-Romainvilliers" ... 
 $ NRPLAN1    : chr  "426" "426" "426" "106" ... 
 $ NUMCOM_AC  : chr  "5" "294" "438" "81" ... 
 $ NUMCOM_VE  : chr  "372" "372" "372" "512" ... 
 $ PADEPT_AC  : chr  "77" "77" "77" "94" ... 
 $ PADEPT_VE  : chr  "77" "77" "77" "59" ... 
 $ PISCINE    : chr  "" "" "" "" ... 
 $ PRESCREDIT : chr  "O" "O" "O" "O" ... 
 $ PXMUTPREC  : chr  "" "" "" "" ... 
 $ QUALITE_AC : chr  "" "" "" "" ... 
 $ QUALITE_VE : chr  "PR" "PR" "PR" "SC" ... 
 $ REFSECTION : chr  "B" "B" "B" "AD" ... 
 $ REQ_AF_AC  : chr  "RP" "" "" "" ... 
 $ REQ_AF_VE  : chr  "" "" "" "" ... 
 $ REQ_ANC    : chr  "1" "1" "1" "2" ... 
 $ REQ_ASCENC : chr  "" "" "" "N" ... 
 $ REQ_CHAUFC : chr  "" "" "" "" ... 

                                                 
5  The transactions BIEN proprietary database was made available by Paris Notaire Service, on the behalf of 

the Chamber of the Notaries, under an agreement contracted by the LabEx DynamiTe (ANR-11-LABX-0046) and the 
Univ. Paris 1 Pantheon-Sorbonne.  
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 $ REQ_COS    : chr  "0" "0" "0" "0" ... 
 $ REQ_DUREE  : chr  "17" "16" "18" "4" ... 
 $ REQ_EPOQU  : chr  "B" "B" "B" "G" ... 
 $ REQ_JARDIN : chr  "" "" "N" "" ... 
 $ REQ_MUT    : chr  "1" "1" "1" "1" ... 
 $ REQ_NIVGAR : chr  NA NA NA NA ... 
 $ REQ_OCC    : chr  "1" "4" "3" "3" ... 
 $ REQ_PM2    : num  945 NA NA 1593 1383 ... 
 $ REQ_POS    : chr  "" "" "" "" ... 
 $ REQ_PRIX   : chr  "47259" "50308" "51070" "89182.49" ... 
 $ REQ_SURFT  : chr  "0" "0" "0" "0" ... 
 $ REQ_VALUE  : chr  NA NA NA NA ... 
 $ REQTYPBIEN : chr  "AP" "AP" "AP" "AP" ... 
 $ SDHOP      : chr  NA NA NA NA ... 
 $ SEXE_AC    : chr  "M" "M" "M" "M" ... 
 $ SEXE_VE    : chr  "" "" "" "" ... 
 $ SHON       : chr  NA NA NA NA ... 
 $ SITMAT_AC  : chr  "M" "C" "M" "M" ... 
 $ SITMAT_VE  : chr  "" "" "" "" ... 
 $ SURFHABDEC : chr  "50" NA NA "56" ... 
 $ TAUXTVA    : chr  "A" "A" "A" "H" ... 
 $ TAXPF      : chr  "N" "N" "N" "O" ... 
 $ TENNIS     : chr  "" "" "" "" ... 
 $ TERRASSE   : chr  "N" "N" "N" "N" ... 
 $ TXDRMUT1   : chr  "3" "3" "3" "0" ... 
 $ TYPAP      : chr  "AS" "AS" "DU" "AS" ... 
 $ TYPBAIL    : chr  "" "AU" "" "" ... 
 $ TYPGAR     : chr  NA NA NA NA ... 
 $ TYPMAI     : chr  "" "" "" "" ... 
 $ TYPMUTPREC : chr  "A" "" "A" "A" ... 
 $ TYPPRO     : chr  "P" "P" "P" "P" ... 
 $ USAGE      : chr  "HA" "HA" "HA" "HA" ... 
 $ VIABILISAT : chr  NA NA NA NA ... 
 $ X          : chr  "628337" "628337" "628337" "0" ... 
 $ Y          : chr  "2436285" "2436285" "2436285" "0" ... 
############################################################################################# 
 

The dataset is then filtered and a subset is prepared (ordinary transactions, residential only, 

apartments only, without null geographical coordinates, for 2011 and 2012), that represents 

90000 observations. Nevertheless, some outliers may appear in the sample, due to data entry 

mistakes, which is a manual process for notaries in France). A first data cleaning consists in 

excluding to the sample exceptional values (1% lower and highest price/square meter 

transaction values). After data cleaning and filtering, the sample is reduced down to 76000 

observations (cf. R CODE 2).   

 

######################                      R CODE 2                   ####################### 
library(dplyr) 
# Convert required fields in numeric  
dfdata <- BIEN_LABEX 
dfdata$annee <- as.numeric(dfdata$annee) 
dfdata$REQ_PRIX <- as.numeric(dfdata$REQ_PM2) 
 
# Convert required fields in numeric  
dfdata[,c("REQ_PRIX")] <- as.numeric(dfdata[,c("REQ_PRIX")]) 
dfdata <- dfdata %>% 
  filter(REQ_MUT==1) %>% #  ordinary transactions (OTC) btw sellers and buyers "gré à gré" 
  filter(USAGE=="HA") %>% #  residential only 
  filter(REQ_PRIX > 1) %>% #  price > 1 eur 
  filter(REQTYPBIEN=="AP" | REQTYPBIEN=="A" ) %>% #Appartements uniquement REQTYPBIEN=="AP" | 
REQTYPBIEN=="A" 
  filter(X!=0)  %>% filter(Y!=0) %>% #  no 0 or 1 coordinates 
  filter(X!=1)  %>% filter(Y!=1) %>% #  no 0 or 1 coordinates 
  filter(annee == 2011 | annee == 2012)  %>% 
  filter(!is.na(X))  %>% filter(!is.na(Y)) #  no NA coordinates 
 
# Prepare the data 
dfdata$REQ_PRIX <- as.numeric(dfdata$prix_ttc) 
dfdata$REQ_SURFT <- as.numeric(dfdata$srf_hab_est) 
dfdata$NBRPIECE <- as.numeric(dfdata$nbr_pieces) 
dfdata$MTCRED <- as.numeric(dfdata$mnt_cred) 
dfdata$X <- as.numeric(dfdata$x) 
dfdata$Y <- as.numeric(dfdata$y) 
dfdata$PRIX_SURF <- dfdata$REQ_PRIX / dfdata$REQ_SURFT 
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# Delete outliers 
bornesQuantiles_prix <- quantile(dfdata$PRIX_SURF, probs = seq(0,1, 0.01), na.rm=TRUE) 
> bornesQuantiles_prix 
       0%        1%        2%        3%        4%        5%        6%        7%        8%        9%       10%        
  200.000  1562.500  1800.000  1950.617  2062.500  2156.863  2245.895  2317.073  2385.285  2449.275  2500.000   
      91%       92%       93%       94%       95%       96%       97%       98%       99%      100%  
 9309.791  9528.302  9782.609 10000.000 10370.296 10789.474 11315.789 12071.193 13444.368 45000.000  
 

dfdata <- subset(dfdata, PRIX_SURF >= bornesQuantiles_prix[2] & PRIX_SURF <= bornesQuantiles_prix[100]) 
 
############################################################################################# 
 

 

3.3.2 Data aggregation in grid and LAU2 level  

The focus with transaction data being to analyse the geography of affordability through home-

ownership inequalities with transactions, several issues have to be dealt with regarding the 

spatial level of aggregation. The information displayed below is aggregated at a very low 

level of spatial granularity (1km grid, LAU2). On the one hand, it provides information in an 

“official” territorial division, as such (LAU2). But on the other hand, these datasets are subject 

to important outliers affecting the quality of the results, especially for territorial units described 

by a small number of real estate transactions, requiring the use of a grid to perform 

interpolation and estimation spatial statistics (1km grid).  

• For spatial analysis purpose, the 1km grid allows to integrate datasets with various 

spatial definitions; 

• Data secrecy, privacy control and legal and/or ethic requirements regarding the 

confidentiality of individual transactions ; 

• The MAUP (Modifiable Areal Unit Problem), related to the spatial distribution of 

transactions and aggregation ; 

• The weakness of the sample and missing data issues. 

• Grid interpolation (cf Section 3.6) 

In concrete terms, this step (cf R CODE 3) consists in aggregating data at transaction level6 to 

the LAU2 and EU 1km grid, for a set of basic targeted indicators (price, surface, rooms, 

debt contracted7). To make possible further analysis, these indicators are aggregated using 

several statistical parameters: first quartile (Q25), median (Q50), third quartile (Q75), 

interquartile range (IQR), sum). Sum is calculated to make possible the computation of 

weighted ratios from the transaction level to aggregated LAU2 and 1km grid level (price per 

square meters for instance). For confidentiality issues and contract restrictions imposed by 

the data provider (Paris Notaries Service, Chamber of the Notaries), grid/LAU2 cells including 

less than 5 records are discarded and set to “NA” (Not Available). Finally, resulting 

                                                 
6  As agreed in the study contract with ESPON, it is not possible to disseminate this proprietary 

disaggregated database.  

7  This selection of indicators corresponds to the most basic information it is possible to 

harmonize at European level. Even if the Chamber of Notaries database delivers data on socio-
economic categories of sellers/buyers, few data providers deliver this kind of data in Europe.    
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aggregated data are merged to EU reference layers thanks to their respective ID and 

exported to an Excel file. Transaction data are at this stage ready to be used for further 

analysis.    

 

######################                      R CODE 3                   ####################### 
Library(xlsx) 
# Reference import (LAU2 and grids) 
FUA <- st_read(dsn = paste0("Mapkits/",CS,"/CommunesCS.shp"), stringsAsFactors = F) 
Grid <- st_read(dsn = paste0("Mapkits/",CS,"/GridCS.shp"), stringsAsFactors = F) 
 
 
###################  Aggregation in Grid layer 
# Points location of transactions in grid cells 
# X-Y BIEN DB (CRS = Lambert II étendu) 
dfgeom <- st_as_sf (dfdata, coords = c ("X","Y"), crs = 27572) 
dfgeom <- st_transform(dfgeom,3035) 
dfgeom <- st_join(dfgeom, Grid) 
 
# Aggregate targeted indicators by point grid 
temp <- as.data.frame(dfgeom %>% count(GRD_ID)) 
colnames(temp) <- c("GRD_ID","TRANS_NUMBER")  
 
temp1 <- as.data.frame(group_by(dfgeom, GRD_ID) %>%  summarise(PRICE_PAID_SUM = sum(REQ_PRIX, na.rm  
= TRUE))) 
temp2 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% 
                         summarise(PRICE_PAID_Q25 = quantile(REQ_PRIX, probs = 0.25, na.rm  = TRUE), 
                                   PRICE_PAID_Q50 = quantile(REQ_PRIX, probs = 0.5, na.rm  = TRUE), 
                                   PRICE_PAID_Q75 = quantile(REQ_PRIX, probs = 0.75, na.rm  = TRUE))) 
temp2$PRICE_PAID_IQR <- temp2$PRICE_PAID_Q75 - temp2$PRICE_PAID_Q25  
temp3 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% summarise(SURFACE_SUM = sum(REQ_SURFT, na.rm  
= TRUE))) 
temp4 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% 
                         summarise(SURFACE_Q25 = quantile(REQ_SURFT, probs = 0.25, na.rm  = TRUE), 
                                   SURFACE_Q50 = quantile(REQ_SURFT, probs = 0.5, na.rm  = TRUE), 
                                   SURFACE_Q75 = quantile(REQ_SURFT, probs = 0.75, na.rm  = TRUE))) 
temp4$SURFACE_IQR <- temp2$PRICE_PAID_Q75 - temp2$PRICE_PAID_Q25  
temp5 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% summarise(ROOMS_SUM = sum(NBRPIECE, na.rm  = 
TRUE))) 
temp6 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% 
                         summarise(ROOMS_Q25 = quantile(NBRPIECE, probs = 0.25, na.rm  = TRUE), 
                                   ROOMS_Q50 = quantile(NBRPIECE, probs = 0.5, na.rm  = TRUE), 
                                   ROOMS_Q75 = quantile(NBRPIECE, probs = 0.75, na.rm  = TRUE))) 
temp6$ROOMS_IQR <- temp6$ROOMS_Q75 - temp6$ROOMS_Q25  
temp7 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% summarise(DEPT_SUM = sum(MTCRED, na.rm  = 
TRUE))) 
temp8 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% summarise(DEPT_Q50 = quantile(MTCRED, probs = 0.5, 
na.rm  = TRUE))) 
temp9 <- as.data.frame(group_by(dfgeom, GRD_ID) %>% 
                         summarise(PRICESURF_Q25 = quantile(PRIX_SURF, probs = 0.25, na.rm  = TRUE), 
                                   PRICESURF_Q50 = quantile(PRIX_SURF, probs = 0.5, na.rm  = TRUE), 
                                   PRICESURF_Q75 = quantile(PRIX_SURF, probs = 0.75, na.rm  = TRUE))) 
temp9$PRICESURF_IQR <- temp9$PRICESURF_Q75 - temp9$PRICESURF_Q25  
transactions <- cbind(temp,temp1, temp2,temp3,temp4,temp5, temp6, temp7, temp8, temp9) 
 
GRIDdata <- Grid[,c("GRD_ID")] 
 
# Merge with EU reference layer 
GRIDdata <- merge(GRIDdata,  
                  transactions[,c("GRD_ID", "TRANS_NUMBER", "PRICE_PAID_SUM", 
                                  "PRICE_PAID_Q25","PRICE_PAID_Q50","PRICE_PAID_Q75", 
                                  "PRICE_PAID_IQR","SURFACE_SUM","SURFACE_Q25","SURFACE_Q50", 
                                  "SURFACE_Q75","SURFACE_IQR","PRICESURF_Q25","PRICESURF_Q50", 
                                  "PRICESURF_Q75","ROOMS_SUM","ROOMS_Q25","ROOMS_Q50","ROOMS_Q75", 
                                  "ROOMS_IQR","DEPT_SUM","DEPT_Q50")], by.x = "GRD_ID", by.y = "GRD_ID", all.x = 
TRUE) 
 
st_geometry(GRIDdata) <- NULL 
 
# Export in XLS  
write.xlsx(as.data.frame(GRIDdata), file = "TRANSACTIONS_PARIS.xls", sheetName = "grid",  
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           col.names = TRUE, append = TRUE, row.names = FALSE, showNA = FALSE) 
 
 
###################  Aggregation LAU2 level 
temp <- as.data.frame(dfdata %>% count(insee)) 
colnames(temp) <- c("insee","TRANS_NUMBER")  
 
temp1 <- as.data.frame(group_by(dfdata, insee) %>% summarise(PRICE_PAID_SUM = sum(REQ_PRIX, na.rm  = 
TRUE))) 
temp2 <- as.data.frame(group_by(dfdata, insee) %>% 
                         summarise(PRICE_PAID_Q25 = quantile(REQ_PRIX, probs = 0.25, na.rm  = TRUE), 
                                   PRICE_PAID_Q50 = quantile(REQ_PRIX, probs = 0.5, na.rm  = TRUE), 
                                   PRICE_PAID_Q75 = quantile(REQ_PRIX, probs = 0.75, na.rm  = TRUE))) 
temp2$PRICE_PAID_IQR <- temp2$PRICE_PAID_Q75 - temp2$PRICE_PAID_Q25  
temp3 <- as.data.frame(group_by(dfdata, insee) %>% summarise(SURFACE_SUM = sum(REQ_SURFT, na.rm  = 
TRUE))) 
temp4 <- as.data.frame(group_by(dfdata, insee) %>% 
                         summarise(SURFACE_Q25 = quantile(REQ_SURFT, probs = 0.25, na.rm  = TRUE), 
                                   SURFACE_Q50 = quantile(REQ_SURFT, probs = 0.5, na.rm  = TRUE), 
                                   SURFACE_Q75 = quantile(REQ_SURFT, probs = 0.75, na.rm  = TRUE))) 
temp4$SURFACE_IQR <- temp2$PRICE_PAID_Q75 - temp2$PRICE_PAID_Q25  
temp5 <- as.data.frame(group_by(dfdata, insee) %>% summarise(ROOMS_SUM = sum(NBRPIECE, na.rm  = 
TRUE))) 
temp6 <- as.data.frame(group_by(dfdata, insee) %>% 
                         summarise(ROOMS_Q25 = quantile(NBRPIECE, probs = 0.25, na.rm  = TRUE), 
                                   ROOMS_Q50 = quantile(NBRPIECE, probs = 0.5, na.rm  = TRUE), 
                                   ROOMS_Q75 = quantile(NBRPIECE, probs = 0.75, na.rm  = TRUE))) 
temp6$ROOMS_IQR <- temp6$ROOMS_Q75 - temp6$ROOMS_Q25  
temp7 <- as.data.frame(group_by(dfdata, insee) %>% summarise(DEPT_SUM = sum(MTCRED, na.rm  = TRUE))) 
temp8 <- as.data.frame(group_by(dfdata, insee) %>% summarise(DEPT_Q50 = quantile(MTCRED, probs = 0.5, 
na.rm  = TRUE))) 
temp9 <- as.data.frame(group_by(dfdata, insee) %>% 
                         summarise(PRICESURF_Q25 = quantile(PRIX_SURF, probs = 0.25, na.rm  = TRUE), 
                                   PRICESURF_Q50 = quantile(PRIX_SURF, probs = 0.5, na.rm  = TRUE), 
                                   PRICESURF_Q75 = quantile(PRIX_SURF, probs = 0.75, na.rm  = TRUE))) 
temp9$PRICESURF_IQR <- temp9$PRICESURF_Q75 - temp9$PRICESURF_Q25  
 
transactions <- cbind(temp,temp1, temp2,temp3,temp4,temp5, temp6, temp7, temp8, temp9) 
 
# Delete transactions number below 5 on the given period 
transactions <- transactions[ which(transactions$TRANS_NUMBER > 5), ] 
 
# Merge income and transactions with LAU2 reference 
LAU2data <- FUA[,c("CENSU","LAU2_","NAME_")] 
 
LAU2data <- merge(LAU2data,  
                  transactions[,c("insee", "TRANS_NUMBER", 
                                  "PRICE_PAID_SUM","PRICE_PAID_Q25","PRICE_PAID_Q50", 
                                  "PRICE_PAID_Q75","PRICE_PAID_IQR","SURFACE_SUM", 
                                  "SURFACE_Q25","SURFACE_Q50","SURFACE_Q75", 
                                  "SURFACE_IQR","PRICESURF_Q25","PRICESURF_Q50", 
                                  "PRICESURF_Q75", "PRICESURF_IQR", "ROOMS_SUM", 
                                  "ROOMS_Q25","ROOMS_Q50", "ROOMS_Q75","ROOMS_IQR", 
                                  "DEPT_SUM", "DEPT_Q50")],  
                  by.y = "insee", by.x = "LAU2_", all.x = TRUE) 
 
 
st_geometry(LAU2data) <- NULL 
 
# Export in XLS  
write.xlsx(as.data.frame(LAU2data), file = "TRANSACTIONS_PARIS.xls", sheetName = "LAU2",  
           col.names = TRUE, append = TRUE, row.names = FALSE, showNA = FALSE) 
 
############################################################################################# 
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Figure 3.2 - Data output : aggregation of relevant indicators at LAU2 and grid level for 10 case-studies 
(extract).  

 
 

3.4 Using unconventional data sources: web-scraping of real-estate 
online listings 

Unconventional data are often viewed as interesting proxies to measure, and better 

understand spatial behaviours and territorial dynamics, and also as a means of providing 

higher spatiotemporal resolution data when compared to institutional data sources. Prior to 

relying upon the unconventional data sources, it is important to assess their reliability, and to 

assess how accurate the information provided is when compared to the long established 

conventional data provision, an institutional statistically robust information collection data.  

Gathering real-estate data on the internet (real-estate advertisement websites) requires to 

follow a general procedure, which can be summarized as below:   

A. Real-estate website identification – Real-estate websites are aggregators of 

advertisement originating from real-estate agents, but also individuals, that generally have a 

national coverage (the ads covers generally a single country). In other terms, it requires for 

each country to define a listing of real-estate agencies in leadership situation (to obtain a 

maximum of ads, well-structured and referenced).  For France (Avignon, Geneva French part 

and Paris), leboncoin.fr has been deemed of interest for this study, for its coverage and for its 

data structure that allows a straightforward data harvesting effort, given the timeframe of the 

study : in May 2019, it included 44886 real-estate offers (apartments only) and 20484 rental 

offers in Paris.  

B. Harvesting real estate online listings (ads) – Step 2 consists in getting the total number 

of ads and determine the number of pages to scrape after having identified the relevant tags 
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syntax in the URL query: as displayed in Figure 3.3 it corresponds to a geographical tag 

(name of the NUTS3) and the type of offer tag (real estate offer / rental ; apartments and-or 

houses, etc). Then, the method consists in exploring automatically all the adds included in all 

pages of the query result. The output is a list of URLs to be harvested (one URL by offer).  

Figure 3.3 - Get links to all ads of a given real estate Website 

 

 

C. Identifying all the relevant information for listed properties. The next step consists in 

preparing the script for each website to automatically fetch the data. It requires to harvest the 

html webpage, and identify all the interesting attributes/tags to get (price, number of rooms, 

surface, geographical location8…), as presented on Figure 3.4. 

This is a tedious, very costly and time-consuming process that requires a lot of retro-

engineering. The cost and duration of the project allowed only for test drives and a few 

months of collection, and some test platforms. We deliver a general methodology: it is 

obvious that a script is valid for one real estate Website, considering the fact that they are 

coded differently. Moreover, if the real estate Website change the organisation of the Web 

page, the tags used in the script must be re-written. Such an iterative procedure is hand-

made, highly artisanal, and highly consuming in qualified worked-force, therefore 

costly. 

D. Data cleaning. The most common mistakes errors are duplicated ad’s (sometimes a real 

estate ad can be published several times), absence of location coordinates or mistakes when 

entering the real estate ad (area, price, etc.). Consequently, results obtained through the Web 

scraping effort must be filtered. As an example for a case-study located in Yvelines in France, 

                                                 
8  Ideally, X/Y coordinates must be scrapped. For some real-estate website, like leboncoin.fr, it is 

quite difficult to obtain this information. The LAU2 and the zip code are considered in this case.  
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the 9934 observations collected resulted in 7460 unique and accurate records, with correct 

location down to the municipality. The geocoding resulting from this procedure is in many 

regards of poor quality compared to the locations provided by institutional data (transactions). 

In the preliminary study, location data is provided by the website either as the city or 

municipality (78%), and only a few ads are geocoded down to the address. In some other 

cases location appear to be the location of the agency.  

Figure 3.4 - Collect and sparse geospatial information 

 

E. Data aggregation. Cleaned web-scraped data are then aggregated in targeted 

geographical delineation (LAU2, grid), following the same methodology than the one used for 

transaction data (Section 3.3. For some countries (Poland, Spain), it is possible to have 

accurate X/Y location and it is consequently possible to aggregate real-estate offers at grid 

level; for other countries, like in France with leboncoin.fr, X/Y location of real-estate offers is 

not directly available, due to the design of the webpage. Harvested data can only be 

aggregated at LAU2 scale for French real-estate offers.   
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3.5 Harmonised indicators (FUA and LAU2 scale)   

Following the data collection/cleaning procedures (steps 3.3 and 3.4), a dataset is created (as 

a ‘sf’ object in R), which includes all the information required to launch the analysis, 

respectively: 

- Official geometries (LAU2 and grid) 

- Income data (municipal and national income data) 

- Aggregated transaction data, if available (rooms, surface, price, debt contracted) 

- Aggregated web-scraped data for property sales (rooms, surface, price) 

- Aggregated web-scraped data for property rental (rooms, surface, price) 

With this structured information, it is possible to launch the analysis on the housing market 

and produce harmonised indicators combining conventional, institutional and unconventional 

data sources as exemplified in R CODE 4. This section provides examples on how to match 

data contained in transactions and other web-scraped data sources, and how to combine 

them to external sources, like municipal income (coming from National censuses) or national 

income (EU surveys)9. 

The first series of harmonised indicators to be built informs on the main characteristics of the 

housing market: size (surface, number of rooms) of the properties (transactions, offer, rental), 

number of offers, price per sq. meters of local markets. This information gives important 

insights to document the heterogeneity of real-estate market segments in case-studies.     

The second series of indicators combine prices, to compare housing 

prices between and within case studies. These are variables of interest to get an overarching 

understanding unequal access to housing: advertised price, income, debt, for instance. To 

better understand inequalities on housing markets, we start with nominal price, and then 

produce harmonized variables, based on ratios, s.a. price-to-income, to analyze affordability; 

and debt-to-value, a proxy for inequalities stemming from equity capital availability of 

households (data available for French case-studies only). Using municipal income allows to 

highlight the financial effort that local households have done to get another property or 

property rental on local real-estate market. On the other hand, the use of national income 

questions on the effort that a standard household should do to access the local real-estate 

market studied in the case study, highlighting how inaccessible a metropolitan market can be. 

The section describes and documents the harmonized indicators produced at the FUA level, 

than at the LAU2 levels, and finally at the 1k Grid level. 

 

                                                 
9  The use of national income provided by EU surveys allows namely to overcome the 

heterogeneity of national income definitions.   
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3.5.1 FUA indicators  

One of the aims of the study consists also in producing statistical synthesis of transaction 

data at FUA levels (all Paris FUA unit, with available data).  This is done with the HousingStat 

function, created for the project and described below (cf R CODE 4), which computes 29 

indicators at FUA scale (using the LAU2 raw dataset, and aggregating these indicators using 

weighted quantiles) relevant for discussing on housing characteristics and affordability: 

• Transaction number (number) 

• Surface of property (Q25, Q50, Q75, average) 

• Number of rooms (Q25, Q50, Q75, average) 

• Price paid (Q25, Q50, 75, average) 

• Price paid per sq. meter (Q25, Q50, Q75, average) 

• Time required to buy one square meter with municipal average income10 (10% of the 

poorest-richest population + median income) 

• Time required to rent one square meter according to municipal or national income 

(10% of the poorest-richest population + median income) 

• Debt contracted / transaction value.  

The interest of this function is also to use it for web-scraped datasets and other case-studies, 

as displayed below in the synthetic table of the well-being report. It allows consequently to 

produce/update quite easily, data being available, statistical synthesis at FUA scale.  

Table 3-2 – Harmonised indicators created at FUA scale (real estate offer) displaying synthetic 
indicators at FUA scale 

 

S
T

A
T

IS
T

IC
S

 

G
e
n
e
v
a
 (

C
H

) 

G
e
n
e
v
a
 
(F

R
) 

/ 

A
n
n

e
c
y
 (

F
R

) 
 

W
a
rs

a
w

 (
P

L
) 

L
o
d
z
 (

P
L
) 

K
ra

k
o
w

 (
P

L
) 

M
a
d
ri

d
 (

E
S

) 

B
a
rc

e
lo

n
a
 (

E
S

) 

P
a
lm

a
 

d
e

 

M
a
llo

rc
a
 (

E
S

) 

P
a
ri
s
 (

F
R

) 

A
v
ig

n
o
n
 (

F
R

) 

Year of 

reference 

 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 

Number of 

offers 

 1096 10801 39293 1595 9382 79227 147094 22040 44886 5397 

Surface  

  

Q25 132.1 71 73.4 73.6 66.3 94.55 93.57 103.4 47.4 76.5 

Q50 186 82 104.2 103.2 87.7 143.33 132.61 145.9 62 98.5 

Q75 276.1 123.5 165.7 160.0 130.5 226.25 199.13 230.4 77.5 141.1 

AV. 374.3 105.1 140.9 137.5 116.6 234.57 190.13 401.7 74.8 119.9 

Rooms 

  

Q25 NA 3.2 2.5 2.55 2.5 NA 2.74 NA 2.3 3.57 

Q50 NA 3.9 3.5 3.53 3.4 NA 3.33 NA 3 4.44 

Q75 NA 4.8 4.5 4.54 4.4 NA 4.16 NA 3.8 5.61 

AV. 7.6 4.1 NA NA NA 3.37 3.52 3.38 3 4.65 

Price Q25 1 184 282.9 116.1 62.3 89.7 209.3 233.7 242.1 209.1 167.8 

                                                 
10  Using statistics provided by National Statistical Institute.  
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(thousands 

euros)  

Q50 1 863 373.6 168.5 872.7 117.5 334.4 334.4 360.5 274.9 233.0 

Q75 3 076 500.4 280.8 143.4 178.0 590.7 507.8 587.3 371.3 344.8 

AV 4 460 400.2 234.6 118.65 158.4 516.7 441.8 554.8 307.9 283.8 

Price per sq. 

meters 

Q25 NA 3584.5 NA NA NA 1897.6 2193.6 1940.5 4138 1925 

Q50 NA 4133.6 NA NA NA 2550.5 2722.8 2552.3 4764 2404 

Q75 NA 4682.9 NA NA NA 3299.7 3388.9 3364.3 5474 2820 

AV 11915 4002.8 1665.3 863.2 1357.8 2202.9 2324 1381.1 4118 2366 

Price to 

income  

LOC11
 67.8 15.7 22.0 15.69 19.1 15.05 14.01 19.6 12.8 14.7 

Q1012 217.1 35.7 77.1 39.0 52.1 93.17 79.67 100.04 25.2 24.1 

Q50 112.7 19.6 39.5 19.96 26.6 36.38 31.11 39.1 13.9 13.3 

Q90 61.4 10.6 20.7 10.48 14 17.67 15.11 19.0 7.6 7.2 

Time required 

to buy 1sq. 

meter 

(month) 

LOC 2.2 1.8 1.9 1.27 2.0 0.77 0.88 0.59 2.1 1.48 

Q10 7.0 4.1 6.6 3.41 5.4 4.77 5.03 2.99 4 2.41 

Q50 3.6 2.2 3.4 1.74 2.7 1.86 1.96 1.17 2.2 1.33 

Q90 2.0 1.2 1.8 0.92 1.4 0.90 0.95 0.57 1.2 0.72 

 
######################                      R CODE 4                   ####################### 
Library(survey) 
Library(sf) 
Library (housing) (This package created within the project imports reference layers for all the case studies of the 
ESPON Housing dynamics project (Paris, Avignon, Barcelona, Madrid, Palma de Majorque, Warsaw, Lodz, Krakow 
and Geneva). The mapping functions implemented allow to create an ESPON map with all the required styles (colors, 
labels, etc.) 
 
 
# This function is used for analysing case-study data at FUA level 
 
# HousingStat Function 
HousingStat <- function(x, id, tsum, sq25, sq50, sq75, ssum, 
                        rq25, rq50, rq75, rsum, pq25, pq50, pq75, psum, 
                        psq25, psq50, psq75, incloc, incnatd1, incnatd5, 
                        incnatd9, pop, deb, name){   
   
  # Delete NA and geometries 
  try(if(missing("tsum") | missing("x") | missing("id")) stop("Transactions/offers number (tsum), data with geometries (x) 
is at least required for the analysis", call. = TRUE)) 
  STAT <- st_set_geometry(x, NULL) 
  STAT <- STAT[!(is.na(STAT[,tsum])),]  
   
  # Number of transactions registered 
  number <- sum(STAT[,tsum], na.rm = TRUE) 
   
  # Apartment surface 
  surface_q25 <- ifelse ((missing("sq25") | missing("tsum") | missing("id")), NA, 
                         svymean(STAT[,sq25], svydesign(ids = STAT[,id] ,data = STAT[,sq25], weights = STAT[,tsum]))[1])  
  surface_q50 <- ifelse ((missing("sq50") | missing("tsum") | missing("id")), NA, 
                         svymean(STAT[,sq50], svydesign(ids = STAT[,id] ,data = STAT[,sq50], weights = STAT[,tsum]))[1])  
  surface_q75 <- ifelse ((missing("sq75") | missing("tsum") | missing("id")), NA, 
                         svymean(STAT[,sq75], svydesign(ids = STAT[,id] ,data = STAT[,sq75], weights = STAT[,tsum]))[1])  
  surface_av <- ifelse ((missing("ssum") | missing("tsum")), NA, 
                        sum(STAT[,ssum], na.rm = TRUE) / number)  
   
  # Rooms 
  rooms_q25 <- ifelse ((missing("rq25") | missing("tsum") | missing("id")), NA, 

                                                 
11  Price to income at LAU2 level, municipalities of the FUA area (be careful to heterogeneity of 

income definitions among EU countries).  

12  Price to income at national level, first decile (EU-SILC Survey).  
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                       svymean(STAT[,rq25], svydesign(ids = STAT[,id] ,data = STAT[,rq25], weights = STAT[,tsum]))[1])  
  rooms_q50 <- ifelse ((missing("rq50") | missing("tsum") | missing("id")), NA, 
                       svymean(STAT[,rq50], svydesign(ids = STAT[,id] ,data = STAT[,rq50], weights = STAT[,tsum]))[1]) 
  rooms_q75 <- ifelse ((missing("rq75") | missing("tsum") | missing("id")), NA, 
                       svymean(STAT[,rq75], svydesign(ids = STAT[,id] ,data = STAT[,rq75], weights = STAT[,tsum]))[1])  
  rooms_av <- ifelse ((missing("rsum") | missing("tsum")), NA, 
                      sum(STAT[,rsum], na.rm = TRUE) / number)  
   
  # Prices  
  price_q25 <- ifelse ((missing("pq25") | missing("tsum") | missing("id")), NA, 
                       svymean(STAT[,pq25], svydesign(ids = STAT[,id] ,data = STAT[,pq25], weights = STAT[,tsum]))[1])  
  price_q50 <- ifelse ((missing("pq50") | missing("tsum") | missing("id")), NA, 
                       svymean(STAT[,pq50], svydesign(ids = STAT[,id] ,data = STAT[,pq50], weights = STAT[,tsum]))[1]) 
  price_q75 <- ifelse ((missing("pq75") | missing("tsum") | missing("id")), NA, 
                       svymean(STAT[,pq75], svydesign(ids = STAT[,id] ,data = STAT[,pq75], weights = STAT[,tsum]))[1])  
  price_av <- ifelse ((missing("psum") | missing("tsum")), NA, 
                      sum(STAT[,psum], na.rm = TRUE) / number)  
   
  # Prices / sq. meters 
  price_met_q25 <- ifelse ((missing("psq25") | missing("tsum") | missing("id")), NA, 
                           svymean(STAT[,psq25], svydesign(ids = STAT[,id] ,data = STAT[,psq25], weights = 
STAT[,tsum]))[1])  
  price_met_q50 <- ifelse ((missing("psq50") | missing("tsum") | missing("id")), NA, 
                           svymean(STAT[,psq50], svydesign(ids = STAT[,id] ,data = STAT[,psq50], weights = 
STAT[,tsum]))[1]) 
  price_met_q75 <- ifelse ((missing("psq75") | missing("tsum") | missing("id")), NA, 
                           svymean(STAT[,psq75], svydesign(ids = STAT[,id] ,data = STAT[,psq75], weights = 
STAT[,tsum]))[1])  
  price_met_av <- ifelse ((missing("ssum") | missing("psum")), NA, 
                          sum(STAT[,psum], na.rm = TRUE) / sum(STAT[ssum], na.rm = TRUE))  
   
  # Price / income 
  incomeloc_av <- ifelse ((missing("incloc") | missing("pop")), NA, 
                          sum((STAT[,incloc] * STAT[,pop]), na.rm = TRUE) / sum(STAT[,pop], na.rm = TRUE)) 
  price_incomeloc <- ifelse ((missing("price_av") | missing("incomeloc_av")), NA, 
                             price_av / incomeloc_av) 
  price_incomenatD10 <- ifelse ((missing("price_av") | missing("incnatd1")), NA, 
                                price_av / STAT[,incnatd1][1]) 
  price_incomenatD50 <- ifelse ((missing("price_av") | missing("incnatd5")), NA, 
                                price_av / STAT[,incnatd5][1]) 
  price_incomenatD90 <- ifelse ((missing("price_av") | missing("incnatd9")), NA, 
                                price_av / STAT[,incnatd9][1]) 
   
  # Time required to buy 1sq meter  
  time_loc <- ifelse ((missing("price_met_av") | missing("incomeloc_av")), NA, 
                      price_met_av / (incomeloc_av/12)) 
  time_natd10 <- ifelse ((missing("price_met_av") | missing("incnatd1")), NA, 
                         price_met_av / (STAT[,incnatd1][1]/12)) 
  time_natd50 <- ifelse ((missing("price_met_av") | missing("incnatd5")), NA, 
                         price_met_av / (STAT[,incnatd5][1]/12)) 
  time_natd90 <- ifelse ((missing("price_met_av") | missing("incnatd9")), NA, 
                         price_met_av / (STAT[,incnatd9][1]/12)) 
   
  # Time required to rent 1sq meter  
  rent_loc <- ifelse ((missing("price_met_av") | missing("incomeloc_av")), NA, 
                      price_met_av / (incomeloc_av/365)) 
  rent_natd10 <- ifelse ((missing("price_met_av") | missing("incnatd1")), NA, 
                         price_met_av / (STAT[,incnatd1][1]/365)) 
  rent_natd50 <- ifelse ((missing("price_met_av") | missing("incnatd5")), NA, 
                         price_met_av / (STAT[,incnatd5][1]/365)) 
  rent_natd90 <- ifelse ((missing("price_met_av") | missing("incnatd9")), NA, 
                         price_met_av / (STAT[,incnatd9][1]/365)) 
   
  # Debt to value 
  debt <- ifelse ((missing("deb") | missing("psum")), NA, 
                  sum(STAT[,deb]) / sum(STAT[,psum]))  
   
  # Synthesis 
  CS <- c(number, surface_q25, surface_q50, surface_q75, surface_av, 
          rooms_q25, rooms_q50, rooms_q75, rooms_av, price_q25, price_q50, 
          price_q75, price_av, price_met_q25, price_met_q50, price_met_q75, 
          price_met_av, price_incomeloc, price_incomenatD10, price_incomenatD50, 
          price_incomenatD90, time_loc, time_natd10, time_natd50, time_natd90, debt, 
          rent_loc, rent_natd10, rent_natd50, rent_natd90) 
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  Indicator <- c("number","surface_q25","surface_q50", "surface_q75", "surface_av", 
                 "rooms_q25", "rooms_q50", "rooms_q75", "rooms_av", "price_q25", 
                 "price_q50", "price_q75", "price_av", "price_met_q25", "price_met_q50", 
                 "price_met_q75", "price_met_av", "price_incomeloc", "price_incomenatD10", 
                 "price_incomenatD50", "price_incomenatD90", "time_loc", "time_natd10", 
                 "time_natd50", "time_natd90", "debt", "rent_loc", "rent_natd10", 
                 "rent_natd50", "rent_natd90") 
  transactions <- data.frame(Indicator, CS) 
  colnames(transactions)[2] <- name 
  transactions <- format(transactions, scientific = FALSE, digits = 2) 
  return(transactions) 
} 
 
 
# Import LAU2 layer containing income and transaction data 
city <- hm_import(folder = "Paris", filepath = "../mapkits") 
LAU2 <- city$CommunesCS 
 
# In the parameters of the function, it is required to put in entry the LAU2 layer including all the reference 
indicators (generated before) and setting all the relevant indicator labels.  
transactions <- HousingStat(x = LAU2, id = "LAU2_", tsum = "TRANS_NUMBER",  
                            sq25 = "SURFACE_Q25", sq50 = "SURFACE_Q50",  
                            sq75 = "SURFACE_Q75", ssum = "SURFACE_SUM", 
                            rq25 = "ROOMS_Q25", rq50 = "ROOMS_Q50", 
                            rq75 = "ROOMS_Q75", rsum = "ROOMS_SUM",  
                            pq25 = "PRICE_PAID_Q25", pq50 = "PRICE_PAID_Q50", 
                            pq75 = "PRICE_PAID_Q75", psum = "PRICE_PAID_SUM", 
                            psq25 = "PRICESURF_Q25", psq50 = "PRICESURF_Q50", 
                            psq75 = "PRICESURF_Q75", incloc = "INCOME_Q50_1112", 
                            incnatd1 = "INCOME_D1_2012", incnatd5 = "INCOME_D5_2012", 
                            incnatd9 = "INCOME_D9_2012", deb = "DEPT_SUM", 
                            pop = "NBMENFISC_1112", name = "Paris") 
 
############################################################################################# 
 
 

3.5.2 LAU2 harmonized indicators  

Producing harmonized indicators at LAU2 scale is the next step. The most relevant ratios are 

combined starting from basic indicators. It is important to notice that it could be possible to go 

far beyond the scope of the study, considering all the amount of data gathered and 

aggregated. For instance, the data delivered for Paris includes more than 60 basic indicators. 

It could be consequently possible to create much more indicators for analysing the real-estate 

market. 

Basically, the LAU2 targeted indicators (calculated for each case-study) are calculated as 

follows (R CODE 5 and Figure 3.5): 

- price/sq. meter (price paid, advertised price, rental), a standard indicator, but highly 

contingent to the local structure of housing ; 

- Three affordability indexes are calculated. Local affordability and national affordability 

(cf Section 3.3.1), and also the difference between local and national affordability. 

This last indicator provides an understanding weather it is easier for a local 

household, as compared to a household coming from the rest of the country, to 

access to property in the designated city (positive values) or not (negative values). 

- Another index is the profitability index, calculated as a ratio between advertised price 

for property and advertised price for property rental. A high index means two things: 

Advertised price are high, as regards to rental offer; or rental offer are low, as regards 
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to real estate offer. In other terms, a high index can be interpreted as locations where 

the development of rental offers may be specifically interesting for real-estate 

owners.  

Figure 3.5 – From basic indicators (transaction, web-scraped and institutional data) to harmonised 
indicators at LAU2 scale 

 

 
######################                      R CODE 5                   ####################### 
# Ratios to be combined 
LAU2$PRICE_ASKED_SQ <- LAU2$OFFERS_SQRMETER_MEAN 
LAU2$RENT_ASKED_SQ <- LAU2$RENT_SQRMETER_MEAN 
LAU2$PRICE_TRANS_SQ <- LAU2$PRICE_PAID_SUM/LAU2$SURFACE_SUM 
LAU2$PROFIT <- LAU2$PRICE_ASKED_SQ / LAU2$RENT_ASKED_SQ  
 
LAU2$TRANS_SQ_METERS_LOC <- LAU2$PRICE_TRANS_SQ  / (LAU2$INCOME_Q50_1112/12) 
LAU2$TRANS_SQ_METERS_NATD5 <- LAU2$PRICE_TRANS_SQ  / (LAU2$INCOME_D5_2011/12) 
LAU2$TRANS_SQ_METERS_DIFF <- LAU2$TRANS_SQ_METERS_LOC - LAU2$TRANS_SQ_METERS_NATD5 
 
LAU2$BUY_SQ_METERS_LOC <- LAU2$PRICE_ASKED_SQ  / (LAU2$MED15/12) 
LAU2$BUY_SQ_METERS_NATD5 <- LAU2$PRICE_ASKED_SQ  / (LAU2$INCOME_D5_2015/12) 
LAU2$BUY_SQ_METERS_DIFF <- LAU2$BUY_SQ_METERS_LOC - LAU2$BUY_SQ_METERS_NATD5 
 
LAU2$RENT_SQ_METERS_LOC <- LAU2$RENT_ASKED_SQ  / (LAU2$MED15/365) 
LAU2$RENT_SQ_METERS_NATD5 <- LAU2$RENT_ASKED_SQ  / (LAU2$INCOME_D5_2015/365) 
LAU2$RENT_SQ_METERS_DIFF <- LAU2$RENT_SQ_METERS_LOC - LAU2$RENT_SQ_METERS_NATD5 
 
############################################################################################# 
 

3.5.3 Mapping LAU2 harmonised indicators   

Harmonized indicators being available at the LAU2 level, the last section of the process can 

be launched to create the final maps. This is done using the ‘housing’ and ‘cartography’ R 

packages. The housing package has been especially developed for the project to import EU 

reference layers for all the case studies of the ESPON Housing dynamics project (Paris, 

Avignon, Barcelona, Madrid, Palma de Majorque, Warsaw, Lodz, Krakow and Geneva). The 

mapping functions implemented allow to create an ESPON map with all the required styles 

(colors, labels, logos etc.). The cartography package offers a series of tools to design 

thematic cartography such as proportional symbols, choropleth, typology, flows or 
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discontinuities maps. It also offers several features that improve the graphic presentation of 

maps, for instance, map palettes, layout elements (scale, north arrow, title...), labels or 

legends. These packages allow for a certain level of automation of iterative tacks. See R 

CODE 6. 

All the maps produced for the Wellbeing report have been created using the same 

methodology discretization methodology: “q6”, which is a method using quantile 

probabilities (0, 0.05, 0.275, 0.5, 0.725, 0.95, 1). From a cartographic perspective, the 

interest of the thresholds it introduced for cutting the statistical series is twice: first, it allows to 

introduce a double colour palette (warm colours below the case-study median and cold 

colours above the median); second the maps created for all the case-studies are comparable: 

for each case-study it is possible to observe on the map the 5 % of the units with higher/lower 

values. This choice of thresholds is another way to make the results comparable within and 

across case-studies. 

R CODE 6 is designed to produce 2 types of maps: price to income ratio (local income, price 

paid) and advertised price to income ratio (with web-scraped data). All the maps produced 

have been realized using this methodology. As a consequence, it is possible to produce 

quickly a large set of maps for each case-study for analysing housing market characteristics 

in 10 case-study cities.   

######################                      R CODE 6                   ####################### 
Library(cartography) 
Library(sf) 
Library (housing) 
# Import reference geometries used for the map (with indicators)  
city <- hm_import(folder = "Paris", filepath = "../mapkits") 
 
# Maps parameters 
sizes <- getFigDim(city$stripe, width = 800, mar=c(0,0,0,0)) 
 
#  Time required to buy 1 sq. meters locally (indicator to be mapped)  
#  Extract the map in vector format, correctly sized (pdf)  
pdf(file = "../fig/03_LAU2_PRICE_SQ_METERS_LOC.pdf",width = sizes[1]/72, height = sizes[2]/72, 
useDingbats=FALSE, pointsize=15.3568) 
 
#  Plot background layers (template)  
hm_bg(city) 
 
#  Map the indicator  
choroLayer(LAU2, var = "TRANS_SQ_METERS_LOC",  method = "q6", 
           col = carto.pal(pal1 = "taupe.pal", n1 = 6), 
           colNA = "white", border = "white", lwd = 0.1, legend.pos = "n", 
           add = T) 
 
#  Plot top layers, logos and texts (data sources, title, etc.)  
hm_top(x = city,  title = "Affordability - municipal income, 2011-2012 (apartments only)", 
       source = "INSEE and BIEN Database, 2019", object = "LAU2") 
 
#  Plot the legend 
legendChoro(pos = c(st_bbox(city$stripes[3,])[3] + (st_bbox(city$mainframe)[3] - st_bbox(city$zoomBox)[3]), 
                    (st_bbox(city$mainframe)[2] + st_bbox(city$mainframe)[4]) / 1.975), 
            title.txt = "Months of local income required to buy 1sq. meter\nAverage advertized price for property per 
square meters / average municipal income 2016\n(85278 transactions - sample)", 
            title.cex = 0.6, values.cex = 0.5, cex = 0.8, 
            breaks = getBreaks(LAU2$TRANS_SQ_METERS_LOC, method = "q6"), 
            col = carto.pal(pal1 = "taupe.pal", n1 = 6),  
            nodata.col = "white", values.rnd =1) 
#  Export the map  
dev.off() 
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# And the same with web-scraped data - Time required to buy 1 sq. meters locally 
pdf(file = "../fig/10_LAU2_BUY_SQ_METERS_LOC.pdf",width = sizes[1]/72, height = sizes[2]/72, 
useDingbats=FALSE, pointsize=15.3568) 
hm_bg(city) 
 
choroLayer(LAU2, var = "BUY_SQ_METERS_LOC",  method = "q6", 
           col = carto.pal(pal1 = "taupe.pal", n1 = 6), 
           colNA = "white", border = "white", lwd = 0.1, legend.pos = "n", 
           add = T) 
 
hm_top(x = city,  title = "Affordability (apartments only) - municipal income, 2019", 
       source = "INSEE and Leboncoin, 2019", object = "LAU2") 
 
legendChoro(pos = c(st_bbox(city$stripes[3,])[3] + (st_bbox(city$mainframe)[3] - st_bbox(city$zoomBox)[3]), 
                    (st_bbox(city$mainframe)[2] + st_bbox(city$mainframe)[4]) / 1.975), 
            title.txt = "Months of local income required to buy 1sq. meter\nAverage advertized price for property per 
square meters / average municipal income 2016\n(44886 offers scrapped in May 2019)", 
            title.cex = 0.6, values.cex = 0.5, cex = 0.8, 
            breaks = getBreaks(LAU2$BUY_SQ_METERS_LOC, method = "q6"), 
            col = carto.pal(pal1 = "taupe.pal", n1 = 6),  
            nodata.col = "white", values.rnd =1) 
dev.off() 
 
############################################################################################# 

Map 3-1 Two resulting maps created with the R CODE 6 

 

 

3.6 Grid data and interpolation – spatial harmonisation issue to obtain 
a global and accurate picture of the real-estate market locally  

For each case-study, at least one indicator has been aggregated at 1 km grid level. The 

resulting raw map (Map 3-2) for Paris reveals three phenomena which may affect the 

interpretation and the dissemination of the map: 

- High spatial heterogeneity: despite data cleaning (exceptional values), spatial 

structures are not clear: in the suburbs, high values are closed to lower ones. In 

suburban areas especially, because of the fragmented structure of the built 

environment and lower densities, classical econometric hypothesis regarding spatial 

autocorrelation of property prices are often unverifiable (Le Goix et al., 2019b).  
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- Missing values. It can be due to a lack of transaction in some grid cells or the 

impossibility to display the data considering the fact that the number of observed 

transaction is below the confidentiality threshold allowed by the Chamber of Notaries 

database: it is not possible to disseminate data (datasets, or data displayed on maps) 

below a given number of 5 transactions by territorial units (at LAU2 or grid level) 

coming from the Chamber of Notaries database.  

- Impossibility to disseminate the data as such, also due to confidentiality threshold.       

Map 3-2 Average advertised price at 1 km grid level – raw map  

 

Grid interpolation allows us to estimate a potential price in adjacent cells, with assumptions 

regarding the spatial interactions between transactions. To offset these limitations, we use a 

combination of a 1km grid and techniques of interpolation, following the assumptions of 

Stewart’s potential, using the `SpatialPosition R package (Commenges et al., 2015). For 

examples and detailed discussion of methodology regarding data processing, gridding, 

interpolation, and mapping, see (Le Goix et al., 2019b). 

The use of interpolation and estimation procedures allows to better control the quality and 

representativeness of the spatial information produced, which is an estimation of the price, i.e. 

a potential price. To do so, we used ‘SpatialPosition’, a R package allowing to compute 

Stewart potential.  

The Stewart potentials of population is a spatial interaction modeling approach which aims to 

compute indicators based on stock values weighted by distance. These indicators have two 
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main interests: first, they produce understandable maps by smoothing complex spatial 

patterns; second they enrich the stock variables with contextual spatial information (Giraud, 

Commenges, 2019). At the European scale, this functional semantic simplification may help 

to show a smoothed context-aware picture of the localized socio-economic activities. It is also 

a convenient methodological solution to offset the risk of Modifiable Area Unit Problem 

(MAUP).  

To interpolate and create Stewart potential, several steps are iterated, as displayed in the R 

CODE 7:  

• We create a distance matrix between the grid cells. Several methods for measuring 

the distance can be considered: functional distances (time-road distance for 

instance) or mathematical distance (Euclidian distance, Manhattan distance). Here 

the Manhattan distance is considered, also called “taxi-distance”, especially useful 

for city networks.   

• We compute the potential according to a specific spatial interaction function. The 

function inputs the matrix distance calculated above, known observations to 

computes the estimates (sum of price paid and sum of property surface for 

Paris), spatial interaction function (Pareto or Power law), span (distance where the 

density of probability of the spatial interaction function equals 0.5 – 2000 m) and a 

beta parameter (impedance factor for the spatial interaction function).    

The parameters used for the analysis (2000m for the span, Pareto for the spatial 

interaction function, 2 for the beta) are justified by the resolution of the grid (1km) and a 

review of the literature on spatial characteristics of real-estate information, and semi-variance 

tests performed on the datasets.  

The Map 3-3 is the result of this harmonisation. It allows to go beyond the LAU2 delineation, 

overcome the MAUP effect, and interpolate values ceteris paribus the number of observed 

transactions and yields a global and accurate picture of the real-estate market on Paris FUA.  

######################                      R CODE 7                   ####################### 
library(SpatialPosition) 
library(sf) 
 
## Create dist matrix (manhattan dist) 
cGRID <- st_coordinates(st_centroid(st_geometry(GRID))) 
row.names(cGRID) <- GRID$GRD_ID 
mat <- as.matrix(dist(cGRID, method = "manhattan")) 
row.names(GRID) <- GRID$GRD_ID 
 
# Delete 1% higest and lowest values & observations below 5  
Q <- quantile(GRID$PRICE_ASKED_SQ, probs = c(.01,.99), na.rm = T) 
sel_o <- GRID$TRANS_NUMBER > 5 & !is.na(GRID$TRANS_NUMBER) & 
  GRID$PRICE_ASKED_SQ >= Q[1] & GRID$PRICE_ASKED_SQ <= Q[2] 
x <- GRID[sel_o,] 
 
# Span & potential calculation 
span <- 2000    
beta <- 2 
p_prix_o <- stewart(knownpts = GRID[sel_o,], unknownpts = GRID[, "GRD_ID"],  
                    varname = "PRICE_PAID_SUM", matdist = mat, 
                    typefct = "pareto", beta = beta, span = span,  
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                    returnclass = "sf") 
p_surf_o <- stewart(knownpts = GRID[sel_o,], unknownpts = GRID[, "GRD_ID"],  
                    varname = "SURFACE_SUM", matdist = mat, 
                    typefct = "pareto", beta = beta, span = span,  
                    returnclass = "sf") 
 
# Merge outputs with grid layer 
GRID$OFFERS_PRICE_SUM_SM <- p_prix_o$OUTPUT 
GRID$OFFERS_SURFACE_SUM_SM <- p_surf_o$OUTPUT 
GRID$PRICE_ASKED_SQ_SM <- GRID$OFFERS_PRICE_SUM_SM/GRID$OFFERS_SURFACE_SUM_SM 
############################################################################################# 
 

 

Map 3-3 Average advertised price at 1 km grid level – smoothed map (span = 2000m, Pareto 
function, beta = 2) 

 

 

3.7 Comparing real-estate values to other big data sources (Airbnb)  

To go beyond the analysis of main data provided with the Wellbeing being report, we also 

tested the interest to combine these indicators with other big data sources, like Airbnb. 

As a first analysis, the aim consists in answering a striking and often fuzzy policy issue: to 

what extent Airbnb affects real-estate residential market? That is to say, to what extent 
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the withdrawal of rental offers from residential markets puts a pressure on real estate markets 

that conditions the availability of affordable permanent housing for prospective buyers and 

renters? 

This analysis, initially done for Paris with transactions data, has revealed significant 

relationship between real-estate transaction and Airbnb offer (density in 200m grid cells, 

preliminary smoothed) (Pecout et al., 2016). We do not compare price, but only the number of 

transactions and the number of Airbnb offers (in a regular grid, i.e. densities): positive outliers 

of a linear relationship between the number of transactions and the number of Airbnb rentals 

show that an abnormal number of properties are converted and used for short term rental, 

and subtracted (extracted for short term profit) from the residential markets. But more 

interesting is the analysis of the statistical regression and its residuals. When mapping the 

fine grain geography of these residuals, it appears clearly that for the center part of Paris and 

touristic neighborhoods (Montmartre), more Airbnb offer appear, all things being equal to the 

density of real-estate transactions, less real-estate transaction happened. It reveals 

consequently spatial concentration of real-market pressurisation.  

Figure 3.6 – Comparing Airbnb and real-estate transactions (Paris). 
Density of Airbnb offer (a.) compared to the density of transactions on apartment property markets (b.). 
Residuals (c) of the linear regression (d). 
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One of the challenges of this project was to test the same methodology, developed in a R 

program (cf R CODE 8) to other case-studies. It has been done for Barcelona in the same 

spatial resolution (200 m grid preliminary smoothed), comparing real-estate offers 

(apartments) and Airbnb density offers. The statistical relationship is still significant (r2 > 0.8). 

Residual maps show high residuals (more Airbnb offer expected, all things being equal to the 

density of real-estate offers) in the Core city of Barcelona (La Rambla, Sagrada Familia 

quarter).    

Figure 3.7 – Comparing Airbnb and real-estate offer (Barcelona)  

 

######################                      R CODE 8                   ####################### 
 
library(cartography) 
library(sf) 
library(SpatialPosition) 
library(ggplot2) 
 
folder <- "Barcelona" 
 
# 1 - Import the data and relevant layers 
# Data 
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grid <- st_read(paste0(folder,"/200.shp"), stringsAsFactors = F) # 200 m grid 
airbnb <- read.csv(paste0(folder,"/Airbnb200.csv")) # Airbnb offer 
offer <- read.csv(paste0(folder,"/FotoBuy200.csv")) # Real estate offer 
grid <- merge(grid, airbnb, by.x = "ID", by.y = "id", all.x = TRUE) 
grid <- merge(grid, offer, by.x = "ID", by.y = "id", all.x = TRUE) 
names(grid)[7:8] <- c("AIRBNB","REAL_ESTATE") 
 
# Layers (carto) 
city <- st_read(paste0(folder, "/layers/CityCS.shp"), stringsAsFactors = F) 
lau2 <- st_read(paste0(folder, "/layers/CommunesCS.shp"), stringsAsFactors = F) 
 
# 2 - Data smoothing 
## Create dist matrix (manhattan dist ) 
span <- 500    
beta <- 2 
method <- "manhattan" 
fct <- "exponential" 
 
cGRID <- st_coordinates(st_centroid(st_geometry(grid))) 
row.names(cGRID) <- grid$ID 
mat <- as.matrix(dist(cGRID, method = method)) 
# Compute potential 
row.names(grid) <- grid$ID 
 
# Delete values below 1 
sel_a <- grid$AIRBNB > 1 & !is.na(grid$AIRBNB) 
sel_o <- grid$REAL_ESTATE > 1 & !is.na(grid$REAL_ESTATE) 
 
# Span & potential calculation 
p_dens_a <- stewart(knownpts = grid[sel_a,], unknownpts = grid[, "ID"],  
                    varname = "AIRBNB", matdist = mat, 
                    typefct = fct, beta = beta, span = span,  
                    returnclass = "sf") 
p_dens_o <- stewart(knownpts = grid[sel_o,], unknownpts = grid[, "ID"],  
                    varname = "REAL_ESTATE", matdist = mat, 
                    typefct = fct, beta = beta, span = span,  
                    returnclass = "sf") 
 
grid$pot_AIRBNB <- p_dens_a$OUTPUT 
grid$pot_REAL_ESTATE <- p_dens_o$OUTPUT 
 
# Density (offer / sq. kilometer) 
grid$pot_AIRBNB <- grid$pot_AIRBNB/4 
grid$pot_REAL_ESTATE <- grid$pot_REAL_ESTATE/4 
 
# Delete 0 values 
sel <- grid$pot_AIRBNB > 1 & grid$pot_REAL_ESTATE > 1 
grid <- grid[sel,] 
 
 
# 3 - Mapping 
# Real estate offers 
sizes <- getFigDim(city, width = 800, mar=c(0,0,0,0)) 
 
pdf(file = paste0(folder,"/fig/REAL_ESTATE.pdf"),width = sizes[1]/72, 
    height = sizes[2]/72, useDingbats=FALSE, pointsize=18) 
 
disc <- quantile(grid$pot_REAL_ESTATE, probs = seq(0,1,0.0625), na.rm = TRUE) 
 
plot(st_geometry(grid), col = NA, border = NA) 
plot(st_geometry(lau2), col = "#c6c4c4", border = "white", add =TRUE) 
 
choroLayer(x = grid, var = "pot_REAL_ESTATE", breaks = disc, nclass = 16, 
           col = carto.pal(pal1 = "green.pal", n1 = 8, pal2 = "red.pal", n2 = 8), 
           border = NA, add = TRUE, legend.pos = "bottom", legend.horiz = TRUE, 
           legend.title.txt = paste0("Number of offers in a neighbourhood of ", 
           span, " m (deciles)\nSteward potential, ",method," distance, ", 
           fct, " function, beta = ",beta), 
           legend.values.rnd = 1) 
 
plot(st_geometry(city), col = NA, border = "black", lwd = 0.5, add = T) 
 
layoutLayer(title = "Density - Real estate offers (2019)", scale = 2, 
            tabtitle = TRUE,  theme = "red.pal") 
dev.off() 
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# Airbnb offers 
pdf(file = paste0(folder,"/fig/AIRBNB.pdf"),width = sizes[1]/72, 
    height = sizes[2]/72, useDingbats=FALSE, pointsize=18) 
 
disc <- quantile(grid$pot_AIRBNB, probs = seq(0,1,0.0625), na.rm = TRUE) 
 
plot(st_geometry(grid), col = NA, border = NA) 
plot(st_geometry(lau2), col = "#c6c4c4", border = "white", add =TRUE) 
 
choroLayer(x = grid,var = "pot_AIRBNB", breaks = disc, nclass = 16, 
           col = carto.pal(pal1 = "green.pal", n1 = 8, pal2 = "red.pal", n2 = 8), 
           border = NA, add = TRUE, legend.pos = "bottom", legend.horiz = TRUE, 
           legend.title.txt = paste0("Number of offers in a neighbourhood of ", 
                                     span, " m (deciles)\nSteward potential, ",method," distance, ", 
                                     fct, " function, beta = ",beta), 
           legend.values.rnd = 1) 
 
plot(st_geometry(city), col = NA, border = "black", lwd = 0.5, add = T) 
 
layoutLayer(title = "Density - Airbnb offers (2019)", 
            scale = 2, 
            tabtitle = TRUE, 
            theme = "green.pal") 
dev.off() 
 
 
# 4 - Statistical regression 
lin<-lm(grid$pot_AIRBNB ~ grid$pot_REAL_ESTATE) 
 
coeff <- lin$coefficients[2] 
int <-  lin$coefficients[1] 
 
txt <- paste0("POT_AIRBNB = ", round(coeff,2), 
              " * POT_REAL_ESTATE ", round(int,2)) 
txt2 <- paste0("R-squared = ", round(summary(lm(grid$pot_AIRBNB~grid$pot_REAL_ESTATE))$r.squared,2)) 
 
layout(matrix(1:4,2,2)) > plot(lin2) 
 
pdf(file = paste0(folder,"/fig/LM.pdf"),width = sizes[1]/72, 
    height = sizes[2]/72, useDingbats=FALSE, pointsize=25) 
 
ggplot(grid, aes(pot_REAL_ESTATE, pot_AIRBNB)) + 
  geom_point(size = 1, colour = "black") + 
  stat_smooth(method = "lm") + 
  #  geom_smooth(aes(group=transect), method="lm") + 
  ylab("Density (hectare) of Airbnb offers - 2018") + 
  xlab("Density (hectare) of real-estate offers - 2019") + 
  annotate("text", x = max(grid$pot_REAL_ESTATE), y = max(grid$pot_AIRBNB), label = txt, hjust = 2) + 
  annotate("text", x = max(grid$pot_REAL_ESTATE), y = max(grid$pot_AIRBNB), label = txt2, hjust = 2) + 
  ggtitle("Relationship between Airbnb and real-estate offers")  
dev.off() 
 
# 5 - Residuals 
grid$estimate_lin <- ((coeff*grid$pot_REAL_ESTATE) + int) 
grid$residual_lin <- (grid$pot_AIRBNB - grid$estimate_lin) 
 
pdf(file = paste0(folder,"/fig/RESIDUALS.pdf"),width = sizes[1]/72, 
    height = sizes[2]/72, useDingbats=FALSE, pointsize=18) 
 
plot(st_geometry(grid), col = NA, border = NA) 
plot(st_geometry(lau2), col = "#c6c4c4", border = "white", add =TRUE) 
 
choroLayer(x = grid, var = "residual_lin",  method = "sd", 
           col = carto.pal(pal1 = "blue.pal", n1 = 9, pal2 = "red.pal", n2 = 6), 
           border = NA,  add = TRUE,legend.pos = "bottom", legend.horiz = TRUE, 
           legend.title.txt = "Residuals of linear model,\n density of Airbnb offer (y) and real estate offer (x)", 
           legend.values.rnd = 1) 
plot(st_geometry(city), col = NA, border = "black", lwd = 0.5, add = T) 
 
layoutLayer(title = "Residuals", 
            scale = 2, 
            tabtitle = TRUE, 
            theme = "blue.pal") 
 
dev.off() 
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4 Summary of methodological and conceptual outputs. Next 
steps for further studies.  

This project, short by its duration (9 months), allowed for some significant scientific and 

methodological endeavours and advancement of knowledge, in two respects: gathering and 

combining real-estate heterogeneous statistical information. It demonstrated also some 

significant inputs for comparing between neighbourhood and between cities, the current state 

of housing markets on real-estate market. More than 80 indicators have been produced at 

LAU2 and grid scales related to real-estate market. Looking at the current data availability at 

European scale (few indicators, only available at FUA or Core city level), it is indubitable that 

it provides some advances to go far away for measuring wellbeing of European citizens as 

regards to the real-estate market. From our point of view, the main methodological 

progresses allowed by this study are:  

- The creation of an operational methodological framework for producing 

comparable analysis between case-study cities. As far as we know, this project is 

the first one which tries to define a common methodological framework for the 

analysis of real-estate market in an international perspective at this very local scale. 

The definition of relevant data sources, the data collection process (targeting basic 

indicators), the data cleaning and the data harmonisation process (harmonised 

indicator of high policy value and spatial smoothing to manage the MAUP effects) is a 

solid foundation upon which further studies can elaborate upon. Moreover, the 

integration of the methodological framework in a R standard code workflow ensures 

the reproducibility of the inputs provided. It opens also the door to further 

methodological improvements (statistical analysis, data cleaning and so on).  

- It combined conventional and unconventional data sources, from institution or 

commercial providers. This was clearly one important challenge to overcome in a 

very short amount of time. This was realised both by using real-estate agents data 

sources and data coming from the Web (Airbnb offers) to put into perspective data 

coming from institutional data sources (transaction and income data). Maps realised 

show concrete spatial structures and territorial discontinuities inside and between the 

studied cities.    

- Multiscalar perspective for feeding the policy debate. More than 100 maps have 

been created for 10 selected case-studies. These maps, based on local observations 

(the level of the transaction or the real-estate offer) offer innovative insights on 

socio-economic dynamics and challenges inside and between European cities. 

Most of the studies on European cities are limited, due to statistics availability, at the 

scale of the city (EU FUA or core cities). These new elements brought here are in 

capacity to feed the policy debate on inequalities inside the city. For instance at EU 

level, Paris is often considered as an example: smart, open to the World, creative, 

etc. The elements brought here also demonstrate, regarding housing market, that 
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Paris and its Functional Urban Area is also very unequal: at LAU2 level, advertised 

prices for property per square/meters in 2019 (leboncoin.fr) ranges from 1,430 

euros/sq meter in the North-Western part of Paris FUA (Montreuil-sur-Epte), up to 

16,000 euros  (Paris 6th arrondissement). With reference to the level of wealth of local 

population (median income), buying 1sq. meter corresponds to 0.8 months of income 

(minimum value) in Grigny (Southern suburbs), up to 9 months in Paris (6th 

arrondissement). The situation on the rental market is similar: renting 1sq. meter 

(advertised price) corresponds to less than 10 euros per month in the periphery 

(Coulombs, Cerny) to more than 40 euros in the inner city or its immediate suburbs 

(Clamart, Western part of Paris). From our point of view, it is clearly by combining the 

scale of analysis (EU level, city level, intra-urban level) that it will be possible to 

provide policy makers with a better understanding of the challenges raised by real-

estate dynamics for accessing to descent housing near to the center of economic and 

employment basins.   

 

Nevertheless, studies on international comparisons on spatial effects of housing 

inequalities are just beginning. Given the time-frame of the data collection and 

preparation of the Wellbeing report, some items should be considered for further studies, 

covering both data collection and analysis issues: 

- We pathed the way to extend the analysis to other case-studies. Gathering data 

for all the European cities would be obviously the ultimate target, but also a dream. 

Indeed, this study has demonstrated – starting from level 0 of data availability at 

European level – that it will not be possible without significant resources and funding. 

From institutional perspective, it would require to identify the most appropriate data 

providers and negotiate the access to the transaction data for each country of 

Europe. In this case, data have been bought with researches agreements outside the 

project for a city selection (Chamber of Notaries in France, Townhall transactions 

taxes for Barcelona, real estate price register in Poland). The main difficulty here, 

outside the cost of the data is also first to manage the territorial level of access to the 

data (BIEN database covers only Ile-de-France, PERVAL the rest of France. In Spain 

data are available at municipal level and not for the entire country); and secondly to 

obtain comparable data between this high heterogeneity of data providers. As 

demonstrated in this document, the BIEN database covers 96 indicators and makes 

possible in-depth analysis on the socio-economic characteristics of the seller or the 

buyer. For other countries, like in the UK, only the point location of the transaction 

and the price is available. In this context, using web-scraped methods can be 

considered as an adapted alternative. This study has demonstrated that it can be true 

to some extent. Some relevant statistics may be produced. But the amount of work it 

induces is high: defining relevant real-estate agents, creating scraping procedures (1 
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by data provider) and data cleaning is not an easy process. And modeling it at the 

scale of a research project is not necessary the best solution. However, transferring 

these procedures of data collection and cleaning to national and/or EU statistical 

institutions may be a sustainable solution in the long term.         

- The scraping and web-harvesting process has proven to be costly and does not 

always insure a cost-effective way to gather significant data, in a non-commercial 

data aggregation effort. The code further requires constant improvement and 

technological follow-up to be useable with future implementation of the targeted 

websites: the web-mining effort involves a constant manning of the process. 

- How to integrate the time dimension and compare institutional and 

unconventional data sources. Even if data have been collected, going more in-

depth in cross-analysis of these data sources should be promising, as demonstrated 

by the comparison of Airbnb offer and real-estate offer. In that perspective, comparing 

the relationship between real-estate transactions and offers should be considered. 

First of all, it allows to statistically check the validity of real-estate offers, as a proxy of 

the real-estate market. Several issues may be explored: for instance the analysis of 

the density of offers as compared to the density of real transactions may reveal some 

interesting patterns. Some areas may be characterized by an over-representation of 

offers, as regards to real-estate actual transactions. It may suggest some disinterest 

for some specific areas. Reversely, over-representation of real-estate transactions as 

regards to offer may suggest a pressurized real-estate market (lack of offers). 

Secondly, the analysis of the relationship between advertised price and price paid (or 

price paid towards the time) may also be explored. This kind of analysis raises among 

others the issue of the real-estate market structure and evolution: Where advertised 

prices are growing, all things being equal to price paid some years ago? Are the 

trends observed towards the time homogeneous in the urban area, or not? Are these 

real-estate trends correlated to socio-economic characteristics, or not (gentrification 

issues)?    

- Further studies should systematically differentiate apartments and houses for 

the analysis. Except for Paris (only apartments have been considered), analysis are 

provided for houses and apartments combined in the analysis. Also, the 

segmentation of residential markets does not systematically compares between 

different cities. In fact, at the scale of the Functional Urban Areas, the analysis should 

be more focused on apartments, which represents the largest part of the housing 

park. When looking into the suburbs of the FUA, the housing park is on average more 

structured by individual housing, which does not follow the same real-estate market 

segmentation and rental/buying structure. The fact to take into account houses in the 

analysis raises also some methodological issues which must be clarified to create 

consistent datasets: to what extent does it make sense to measure the surface of a 
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house for an evaluation of the price per sq.meters? Does it requires to take into 

account the garden or not? Does the data providers (institutional data providers, real-

estate agents) differentiate living space and the garden in real-estate transactions 

database and ads? Not systematically: this is another drawback of using 

unconventional “big data” sources. 

- Go far away for data smoothing. Harmonized maps created used basically the 

price/square meter parameter and homogeneous functions parameters, based on 

literature review (Pareto function, Manhattan distance, beta = 2, span = 2000m) to 

interpolate real-estate values in the space. Results are promising but could at least 

be extended in two different ways. First, elaborating further on the analysis of 

interpolation methods and how to implement the distance decay function between 

transactions. It can be explored with the use of variograms (Figure 4.8). In spatial 

statistics, this function describes the degree of spatial dependence of a spatial 

random field. In practice, the use of variogram in the context of real-estate analysis 

may propose interesting perspectives for a better understanding of the local real-

estate market structure and could help to better define appropriate parameters for 

better modeling the Stewart potential used to interpolate price in the space.  

 

Figure 4.8 – Variogram of advertised price of real-estate property prices (euros/sq. kilometer) in 
Barcelona according to distance 

 

Secondly, there is no unique scale at which should be defined the spatial extent of 

“higher prices” or “lower prices”. Each type of economic and social interaction indeed 

spans specific geographic distances. Each of the scales of analysis may be relevant 

and closely pertains to urban contexts and also stakeholders. Obviously for real-

estate agents or people interested in buying a real-estate property the local context 

(Figure 4.9, top left, span = 1km) is the most relevant. For urban planners or policy 
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makers the intermediate level (2-5km) gives important insights on the local structure 

of the market and gives overall information on intra-urban discontinuities and 

inequalities. At European level, smoothed map with a more generalized information 

provides significant insights on the global organization of real-estate market in 

Functional Urban Areas, and is certainly more adapted for international comparisons. 

This first attempt may be explored more in depth in the future, and requires 

sometimes to return on the data structure to identify if exceptional values observed 

corresponds to the reality or due to statistical artifacts (outliers in specific locations).  

Figure 4.9 – Average real-estate transaction prices (euros per square meters) in Paris interpolated at 
several geographical scales (span parameter = 1000m, 2000m, 5000m and 10000m) 
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Annex 1 – Python scripts used to harvest French real-estate 
website 

The python scraping program developed elaborates on Scrapy, a python library mostly 

focused on data harvesting. Scrapy runs using different python files, and a main organisation 

that the user can change to fit his needs. The user sets “spiders” that crawl through selected 

webpages and gather information required by the user, using the html code of said pages 

(see figure A.1). Each item of the following layout is a python file who either holds information 

that is usefull for scraping or crawls the webpages to gather information.  

Figure A.1 - Scraping webpages using Scrapy 

 

 
 
 

###################                      MAIN_SCRAPING                 #################### 
 
 

import scrapy 
# twisted is a python library that is used to run scrapy 
from twisted.internet import reactor, defer 
from scrapy.crawler import CrawlerRunner 
from scrapy.utils.log import configure_logging 
 

#https://doc.scrapy.org/en/latest/topics/practices.html 

Main_Scraping

choosing which spider to run

To scrape rent  data : 

Spider_Rents

To scrape sales data : 

Spider_Sales

Spider_Rents

installing packages

creat ing output  csv

using input  csv to select  townships

creat ing the url of data to scrape

checking for duplicates

scraping data

adding scraped data to output  csv

Requirem ents

list  of all the packages that  are

used for the scraping program

Output  docum ent

list  of all the packages that  are

used for the scraping program

Spider_Sales

installing packages

creat ing output  csv

using input  csv to select  townships

creat ing the url of data to scrape

checking for duplicates

scraping data

adding scraped data to output  csv

Item s

list  of all the variables that  will 

appear in the output  csv
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from boncoin_project.spiders import Cities 
from boncoin_project.spiders import locations 
configure_logging() 
runner = CrawlerRunner() 
 
# A runner is defined to send spiders to crawl on the webpages 
# here you can choose which spider to use (crawl rent or sales offers) 
@defer.inlineCallbacks 
def crawl(): 
    yield runner.crawl(Cities.Cities) 
    yield runner.crawl(locations.Locations) 
    yield runner.crawl(another spyder) 
    reactor.stop() 
crawl() 
reactor.run() 
 

######################################################################### 
 

###################                      REQUIREMENTS                 #################### 
 

cfscrape 
fake-useragent 
beautifulsoup4 
pendulum 
scrapy 
csvkit 
pandas 
 

######################################################################### 
 

###################                              ITEMS                         #################### 
 

# Define here the models for your scraped items 
# See documentation in: 
# http://doc.scrapy.org/en/latest/topics/items.html 
 
import scrapy 
 
# allows us to import in the csv file the information that has been scraped online 
 
# the AnnoncesSales class is used to store the data collected on household sales 
class AnnoncesSale(scrapy.Item): 
    annoncet = scrapy.Field() 
    logprix = scrapy.Field() 
    url = scrapy.Field() 
    #descr = scrapy.Field() 
    loghonoraires = scrapy.Field() 
    logtypebien = scrapy.Field() 
    lognbpieces = scrapy.Field() 
    logsurface = scrapy.Field() 
    energieclass = scrapy.Field() 
    energieges = scrapy.Field() 
    annonceh = scrapy.Field() 
    annonced = scrapy.Field() 
    logcodepost = scrapy.Field() 
    logville = scrapy.Field() 
    scrapdate = scrapy.Field() 
    scrapheure = scrapy.Field() 
    ID_URL = scrapy.Field() 
    agenceimmonom = scrapy.Field() 
    agenceimmoadresse = scrapy.Field() 
    agenceimmosiret = scrapy.Field() 
    agenceimmosiren = scrapy.Field() 
    agenceimmotel = scrapy.Field() 
    insee = scrapy.Field() 
    typetransaction = scrapy.Field() 
 
# the AnnonceLoc class is used to store the data collected on houses and apartments rentals 
class AnnoncesRental(scrapy.Item): 
    annoncet = scrapy.Field() 
    logprix = scrapy.Field() 
    url = scrapy.Field() 
    #descr = scrapy.Field() 
    logcharges = scrapy.Field() 
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    logtypebien = scrapy.Field() 
    lognbpieces = scrapy.Field() 
    logsurface = scrapy.Field() 
    energieclass = scrapy.Field() 
    energieges = scrapy.Field() 
    annonceh = scrapy.Field() 
    annonced = scrapy.Field() 
    logcodepost = scrapy.Field() 
    logville = scrapy.Field() 
    scrapdate = scrapy.Field() 
    scrapheure = scrapy.Field() 
    ID_URL = scrapy.Field() 
    agenceimmonom = scrapy.Field() 
    agenceimmoadresse = scrapy.Field() 
    agenceimmosiret = scrapy.Field() 
    agenceimmosiren = scrapy.Field() 
    agenceimmotel = scrapy.Field() 
    insee = scrapy.Field() 
    typetransaction = scrapy.Field() 
 

######################################################################### 
 

###################                      SPIDER_RENT                 #################### 
 
# SPIDER 
# used to scrape only rentals 
 
# list of required packages to successfully run the spider 
from bs4 import BeautifulSoup 
import scrapy 
import cfscrape 
from fake_useragent import UserAgent 
import pendulum 
import json 
import random 
from boncoin_project.items.Items import * 
import csvkit 
import pandas as pd 
 
class Locations(scrapy.Spider): 
    name = "locations" 
    # specifying already existing settings, this part can filled out by the user 
    custom_settings = { 
        # gives the number of concurrent requests that will be run at the same time, to avoid detection on the 
scraped 
        # website, it is best to use one request at a time 
        'CONCURRENT_REQUESTS': '1', 
        # allows us to set how long each request will take. If our program scraps too quickly, it might get 
detected by 
        # the website security. For Leboncoin, two seconds for each request should work fine. 
        'DOWNLOAD_DELAY':'2', 
        'COOKIES_ENABLED': True, 
        # HTTPERROR_ALLOWED_CODES allows certain errors, meaning the program keeps running after 
encountering them 
        'HTTPERROR_ALLOWED_CODES':[404], 
        'FEED_EXPORTERS': { 
            'csv': 'scrapy.exporters.CsvItemExporter'}, 
        # allows us to choose the type of file that is produced in output by the program 
        'FEED_FORMAT' : 'csv', 
        # allows us to choose the encoding of the file in output 
        'FEED_EXPORT_ENCODING' : 'utf-8', 
        # allows us to choose the name of the file in output 
        'FEED_URI' : 'Locations_Com_Out_10.csv', 
        'DEFAULT_REQUEST_HEADERS': { 
            # prepares the user-agent, the id of the program while it scraps information from the website 
 
            'User-agent' : 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:62.0) Gecko/20100101 Firefox/62.0', 
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 
        'Accept-Language': 'fr,fr-FR;q=0.8,en-US;q=0.5,en;q=0.3'}, 
    } 
    # defines the web page where our spider starts scraping 
    start_urls = ['https://www.leboncoin.fr/recherche/?category=10&real_estate_type=1,2'] 
    # specifies the domain of the website to scrap using this specific spider 
    allowed_domains = ['leboncoin.fr'] 
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    # calls the user-agent that is specified in the settings of our spider 
    ua = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:62.0) Gecko/20100101 Firefox/62.0' 
 
    # allows us to get the date and time for each scraped item 
    def __init__(self, aDate = pendulum.today()): 
        super(Locations, self).__init__() 
        self.aDate = aDate 
        self.timestamp = self.aDate.timestamp() 
        print("PENDULUM UTC TODAY", self.aDate.today()) 
        print("PENDULUM UTC TIMESTAMP TODAY ", self.timestamp) 
 
    # allows us to use beautifulSoup, a python library used to pull data from webpages 
    def clean_html(self, html_text): 
        soup = BeautifulSoup(html_text, 'html.parser') 
        return soup.get_text() 
 
    # launches the first request, using the start url defined earlier 
    def start_requests(self): 
        for url in self.start_urls: 
            yield scrapy.Request(url=url, callback = self.parse_page) 
 
    # allows us to build the url of each township we want to scrap information about 
    def parse_page(self, response): 
        # we first import the csv containing the names and postal codes of the townships we wish to get 
information on 
         csvcible1 = pd.read_csv('All_Com_IN_6.csv') 
        # then, for each row in our input file (csvcible1) we build the url according to leboncoins' structure : 
         for index, row in csvcible1.iterrows(): 
             # ligne1 will host the ID_URL value for the selected row; ID_URL is the concatenation of the name of 
the township(for exemple "Paris"), of "_" and of its postal number (for exemple "75001") so that the output 
fits leboncoins' structure ("Paris_75001") 
             ligne1 = row["ID_URL"] 
             # csvinsee is calling "LAU2_" , which is the insee code of the selected township; this code is of no 
use for scraping but must be kept in order to use it later for merging purposes 
             csvinsee = row["LAU2_"] 
             print(ligne1) 
             print(csvinsee) 
             # urllen creates, by concatenation, a fake url that could be similar to one of Leboncoin containing all 
the offers for a specific township. If this url already exists in Leboncoin, it will possible to go further and 
scrap the data that it contains. If this URL doesn't exist, the program will skip to the next line of the input 
document 
             urllen = 'https://www.leboncoin.fr/recherche/?category=10&locations=' + ligne1 + '&real_estate_type=1,2' 
             print(urllen) 
             yield scrapy.Request(url=urllen, callback=self.parse_nbpages, meta={"ligne1": ligne1, 
                                                                                 "csvinsee": csvinsee}) 
 
    # this function allows us to look for the right number of pages, to avoid leaving out offers and to avoid 
scraping 
    # empty pages (see Leboncoin documentation) 
    def parse_nbpages (self, response): 
        # first, we call back previous information (the "ID_URL" and the insee code from the previous function 
        ligne1 = response.meta['ligne1'] 
        csvinsee = response.meta['csvinsee'] 
        # we start scraping information : here, the number of offers per township 
        nbannonces = str(' '.join(response.xpath('//p/span[@class="_2ilNG"]/text()').extract()).replace(" ", "")) 
        # we change the format of the information scraped to "integer' to reuse it easier 
        nbpages = int(nbannonces) 
        print(nbpages) 
        # we divide the number of offers by 35 (the maximum number of offers by offers page) and we add 2 to 
also have 
        # the offers that could be on the last page with less than 35 offers 
        nbpages = round(nbpages/35)+2 
        print(nbpages) 
        # this loop is used to obtain, for each offers page, the correct number of url that will be needed for the 
rest of the scraping 
        for p in range(1,nbpages): 
            print(p) 
            # the scraped url here is modified to stretch the search for the maximum number of offers page as far 
as there arer still offers pages for each specific township 
            urls = 'https://www.leboncoin.fr/recherche/?category=10&locations=' + ligne1 + '&real_estate_type=1,2'+\ 
                   '&page='+ str(p) 
            yield scrapy.Request(url = urls, callback = self.parse, priority=1, meta= {"ligne1" : ligne1, 
                                                                                       "csvinsee":csvinsee}) 
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    # This function allows us to get the exact number of offers per offers page, to get the url of each individual 
offer, and to make sure that said offer has not been scraped before 
    def parse(self, response): 
        # the "clearfix trackable object is the unique id of each offer, and is used to create the unique URL of 
each offer on Leboncoin 
        extra = response.xpath('//a[@class="clearfix trackable"]/@href').extract() 
        ligne1 = response.meta['ligne1'] 
        csvinsee = response.meta['csvinsee'] 
        for i in extra: 
            # by concatenation, we bring together leboncoin standard url start ""https://www.leboncoin.fr" and 
the unique id (the "clearfix trackable" mention before) to get the unique offers' URL 
            url2 = "https://www.leboncoin.fr"+i 
            annonce = AnnoncesRental() 
            annonce['url'] = url2 
            annonce['ID_URL'] = ligne1 
            print(url2) 
            # we check if this offer has been scraped before by using the url we have just created. If it has, it is 
ignored, if is not be scraped before, it is scraped now 
            if url2 not in open('Locations_Com_Out_8.csv', encoding='utf8').read(): 
                yield scrapy.Request(url=url2, callback=self.parse_annonce,meta={"annonce": annonce, 
                                                                                 "csvinsee": csvinsee}) 
            else: 
                print("Dejà scrapé") 
 
    # this last function scraps the information we need from each offer and prepares it to be added to the 
output csv 
    def parse_annonce(self, response): 
 
        # we call information gathered or created previously in the program 
        annonce = response.meta['annonce'] 
        csvinsee = response.meta['csvinsee'] 
 
        # we specify if the advertised good is for sale or for rent and create a new column in the output csv that 
contains that information 
        annonce['typetransaction'] = "Location" 
 
        # using the input csv, whe get the insee code of the township in which is located the good mentioned in 
the offer 
        annonce['insee'] = csvinsee 
 
        # scraping the title of the offer 
        annonce['annoncet'] = ' '.join(response.xpath('//h1[@class="_246DF _2S4wz"]/text()').extract()).replace(";"," ") 
 
        # scraping the rental price of the good 
        annonce['logprix'] = response.xpath('//span[@class ="_1F5u3"]/text()').extract()[0] 
 
        # scraping the full text that the user typed to describe the good 
        annonce['descr'] = ' '.join(response.xpath('//span[@class ="content-CxPmi"]/text()').extract()).replace(";"," ") 
 
        # time and date of the scraping of the this particular offer 
        annonce['scrapdate'] = self.aDate.today().to_date_string().replace("-","/") 
        annonce['scrapheure'] = self.aDate.today().to_time_string() #.replace(":","/") 
 
        # scraping if there are any additional fees (electricty, water, etc. not included in the rental price 
        annonce['logcharges'] = response.xpath('//div[@class="_2B0Bw _1nLtd"]//text()').extract()[1] 
 
        # scraping what type of good it is (house or apartment) 
        annonce['logtypebien'] = response.xpath('//div[@data-qa-id="criteria_item_real_estate_type"]/div/div[2]/text()')\ 
            .extract() 
 
        # scraping the number of rooms 
        annonce['lognbpieces'] = response.xpath('//div[@data-qa-id="criteria_item_rooms"]/div/div[2]/text()').extract() 
 
        # scraping the area of the good (in square meters) 
        annonce['logsurface'] = ' '.join(response.xpath('//div[@data-qa-id="criteria_item_square"]/div/div[2]/text()')\ 
                                         .extract())[:-2] 
 
        # scraping the energy class of the good ("A", "B", "C", "D", "E", "F" or "G") 
        annonce['energieclass'] = response.xpath('//div[@class="_2Fdg_1kx3G"]/div[contains(@class,"_1sd0z")]/text()')\ 
            .extract() 
 
        # scraping the Greenhouse gas emission category if the good ("A", "B", "C", "D", "E", "F" or "G") 
        annonce['energieges'] = response.xpath('//div[@class="_2Fdg- QGdfG"]/div[contains(@class,"_1sd0z")]/text()')\ 
            .extract() 
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        # scraping the time where the offer was submitted 
        annonce['annonceh'] = ' '.join(response.xpath('//div[@data-qa-id="adview_date"]/text()').extract())[-5:] 
 
        # scraping the date where the offer was submitted 
        annonce['annonced'] = ' '.join(response.xpath('//div[@data-qa-id="adview_date"]/text()').extract())[:10] 
 
        # for a few particular townships, it was necessary to specify exceptions in order to be able to scrap 
them 
        # It was also believed necessary to obtain in the output file the name in full caps of each township 
scraped 
        listeSaints = ('Lieusaint','Saints','Saintry-sur-Seine', 'Saintlieu', 'Saint-Symphorien-le-Château', 
                       'Saint-Maur-de-Fossés', 'Saints', "Saint-Cyr-l'Ecole") 
        if response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] not in listeSaints: 
            annonce['logville'] = response.xpath('//div[@data-qa-id="adview_location_informations"]//text()')\ 
            .extract()[0]\ 
            .replace("á", "a").replace("à", "a").replace("â", "a").replace("ä", "a") \ 
            .replace("é", "e").replace("è", "e").replace("ê", "e").replace("ë", "e") \ 
            .replace("í", "i").replace("ì", "i").replace("î", "i").replace("ï", "i") \ 
            .replace("ó", "o").replace("ò", "o").replace("ô", "o").replace("ö", "o") \ 
            .replace("ú", "u").replace("ù", "u").replace("û", "u").replace("ü", "u") \ 
            .replace("'", " ").replace("-", " ").replace("É", "e").replace("ç", "c") \ 
            .replace("Ç ","c").replace("Ÿ","Y").replace("ÿ","y").replace("Î","I")\ 
            .upper().replace(" SAINT "," ST ").replace(" SAINTS "," ST ").replace("-SAINT ", "-ST ")\ 
            .replace("-SAINTS ", "-ST ").replace(" SAINT-"," ST-").replace(" SAINTS-"," ST-") \ 
            .replace("-SAINT-", "-ST-").replace("-SAINTS-", "-ST-").replace("SAINT","ST")\ 
            .replace("SAINTS","ST") 
        elif response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] in listeSaints: 
            annonce['logville'] = response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] \ 
            .replace("á", "a").replace("à", "a").replace("â", "a").replace("ä", "a") \ 
            .replace("é", "e").replace("è", "e").replace("ê", "e").replace("ë", "e") \ 
            .replace("í", "i").replace("ì", "i").replace("î", "i").replace("ï", "i") \ 
            .replace("ó", "o").replace("ò", "o").replace("ô", "o").replace("ö", "o") \ 
            .replace("ú", "u").replace("ù", "u").replace("û", "u").replace("ü", "u") \ 
            .replace("Ç ","c").replace("'", " ").replace("-", " ").replace("É", "e").replace("ç", "c").upper() 
 
        # finally, scraping the postal code of each offer 
        annonce['logcodepost'] = str(response.xpath('//div[@data-qa-
id="adview_location_informations"]//text()').extract()[2]).zfill(5) 
 
        yield annonce 
 

######################################################################### 
 

###################                      SPIDER_SALES                #################### 
 
# SPIDER 
# used to scrape only sales 
 
# list of required packages to successfully run the spider 
from bs4 import BeautifulSoup 
import scrapy 
import cfscrape 
from fake_useragent import UserAgent 
import pendulum 
import json 
import random 
from boncoin_project.items.Items import * 
import csvkit 
import pandas as pd 
 
class Cities(scrapy.Spider): 
    name = "cities" 
    # specifying already existing settings, this part can filled out by the user 
    custom_settings = { 
        # gives the number of concurrent requests that will be run at the same time, to avoid detection on the 
scraped website, it is best to use one request at a time 
        'CONCURRENT_REQUESTS': '1', 
        # allows us to set how long each request will take. If our program scraps too quickly, it might get 
detected by the website security. For Leboncoin, two seconds for each request should work fine. 
        'DOWNLOAD_DELAY': '2', 
        'COOKIES_ENABLED': True, 
        # HTTPERROR_ALLOWED_CODES allows certain errors, meaning the program keeps running after 
encountering them 
        'HTTPERROR_ALLOWED_CODES': [404], 
        'FEED_EXPORTERS': { 
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            'csv': 'scrapy.exporters.CsvItemExporter'}, 
        # allows us to choose the type of file that is produced in output by the program 
        'FEED_FORMAT': 'csv', 
        # allows us to choose the encoding of the file in output 
        'FEED_EXPORT_ENCODING': 'utf-8', 
        # allows us to choose the name of the file in output 
        'FEED_URI': 'All_Com_OUT_11.csv', 
        # prepares the user-agent, the id of the program while it scraps information from the website 
        'DEFAULT_REQUEST_HEADERS': { 
            'User-agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:62.0) Gecko/20100101 Firefox/62.0', 
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 
            'Accept-Language': 'fr,fr-FR;q=0.8,en-US;q=0.5,en;q=0.3'}, 
    } 
    # defines the web page where our spider starts scraping 
    start_urls = ['https://www.leboncoin.fr/recherche/?category=9&locations=d_75&real_estate_type=1,2,3'] 
    # specifies the domain of the website to scrap using this specific spider 
    allowed_domains = ['leboncoin.fr'] 
 
    # calls the user-agent that is specified in the settings of our spider 
    ua = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:62.0) Gecko/20100101 Firefox/62.0' 
 
    # allows us to get the date and time for each scraped item 
    def __init__(self, aDate=pendulum.today()): 
        super(Cities, self).__init__() 
        self.aDate = aDate 
        self.timestamp = self.aDate.timestamp() 
        print("PENDULUM UTC TODAY", self.aDate.today()) 
        print("PENDULUM UTC TIMESTAMP TODAY ", self.timestamp) 
        # binary = FirefoxBinary('path/to/binary') 
        # self.driver = webdriver.Firefox(firefox_binary=binary) 
 
    # allows us to use beautifulSoup, a python library used to pull data from webpages 
    def clean_html(self, html_text): 
        soup = BeautifulSoup(html_text, 'html.parser') 
        return soup.get_text() 
 
    # launches the first request, using the start url defined earlier 
    def start_requests(self): 
        for url in self.start_urls: 
            yield scrapy.Request(url=url, callback=self.parse_page) 
 
    # allows us to build the url of each township we want to scrap information about 
    def parse_page(self, response): 
        # we first import the csv containing the names and postal codes of the townships we wish to get 
information on 
        csvcible1 = pd.read_csv('All_Com_IN_6.csv') 
        # then, for each row in our input file (csvcible1) we build the url according to leboncoins' structure : 
        for index, row in csvcible1.iterrows(): 
            # ligne1 will host the ID_URL value for the selected row; ID_URL is the concatenation of the name of 
the township(for exemple "Paris"), of "_" and of its postal number (for exemple "75001") so that the output 
fits leboncoins' structure ("Paris_75001") 
            ligne1 = row["ID_URL"] 
            # csvinsee is calling "LAU2_" , which is the insee code of the selected township; this code is of no 
use for scraping but must be kept in order to use it later for merging purposes 
            csvinsee = row["LAU2_"] 
            print(ligne1) 
            print(csvinsee) 
            # urllen creates, by concatenation, a fake url that could be similar to one of Leboncoin containing all 
the offers for a specific township. If this url already exists in Leboncoin, it will possible to go further and 
scrap the data that it contains. If this URL doesn't exist, the program will skip to the next line of the input 
document 
            urllen = 'https://www.leboncoin.fr/recherche/?category=9&locations=' + ligne1 + '&real_estate_type=1,2' 
            print(urllen) 
            yield scrapy.Request(url=urllen, callback=self.parse_nbpages, meta={"ligne1": ligne1, 
                                                                                "csvinsee": csvinsee}) 
 
    # this function allows us to look for the right number of pages, to avoid leaving out offers and to avoid 
scraping empty pages (see Leboncoin documentation) 
    def parse_nbpages(self, response): 
        # first, we call back previous information (the "ID_URL" and the insee code from the previous function 
        ligne1 = response.meta['ligne1'] 
        csvinsee = response.meta['csvinsee'] 
        # we start scraping information : here, the number of offers per township 
        nbannonces = str(' '.join(response.xpath('//p/span[@class="_2ilNG"]/text()').extract()).replace(" ", "")) 
        # we change the format of the information scraped to "integer' to reuse it easier 
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        nbpages = int(nbannonces) 
        print(nbpages) 
        # we divide the number of offers by 35 (the maximum number of offers by offers page) and we add 2 to 
also have the offers that could be on the last page with less than 35 offers 
        nbpages = round(nbpages / 35) + 2 
        print(nbpages) 
        # this loop is used to obtain, for each offers page, the correct number of url that will be needed for the 
rest of the scraping 
        for p in range(1, nbpages): 
            print(p) 
            # the scraped url here is modified to stretch the search for the maximum number of offers page as far 
as there arer still offers pages for each specific township 
            urls = 'https://www.leboncoin.fr/recherche/?category=9&locations=' + ligne1 + '&real_estate_type=1,2' + \ 
                   '&page=' + str(p) 
            yield scrapy.Request(url=urls, callback=self.parse, priority=1, meta={"ligne1": ligne1, 
                                                                                  "csvinsee": csvinsee}) 
 
    # This function allows us to get the exact number of offers per offers page, to get the url of each individual 
offer, and to make sure that said offer has not been scraped before 
    def parse(self, response): 
        # the "clearfix trackable object is the unique id of each offer, and is used to create the unique URL of 
each offer on Leboncoin 
        extra = response.xpath('//a[@class="clearfix trackable"]/@href').extract() 
        ligne1 = response.meta['ligne1'] 
        csvinsee = response.meta['csvinsee'] 
        for i in extra: 
            # by concatenation, we bring together leboncoin standard url start ""https://www.leboncoin.fr" and 
the unique id (the "clearfix trackable" mention before) to get the unique offers' URL 
            url2 = "https://www.leboncoin.fr" + i 
            annonce = AnnoncesSale() 
            annonce['url'] = url2 
            annonce['ID_URL'] = ligne1 
            print(url2) 
            # we check if this offer has been scraped before by using the url we have just created. If it has, it is 
ignored, if is not be scraped before, it is scraped now 
            if url2 not in open('Ventes_Com_Out_7.csv', encoding='utf8').read(): 
                yield scrapy.Request(url=url2, callback=self.parse_annonce, meta={"annonce": annonce, 
                                                                                  "csvinsee": csvinsee}) 
            else: 
                print("Dejà scrapé") 
 
    # this last function scraps the information we need from each offer and prepares it to be added to the 
output csv 
    def parse_annonce(self, response): 
 
        # we call information gathered or created previously in the program 
        annonce = response.meta['annonce'] 
        csvinsee = response.meta['csvinsee'] 
 
        # we specify if the advertised good is for sale or for rent and create a new column in the output csv that 
contains that information 
        annonce['typetransaction'] = "Vente" 
 
        # using the input csv, whe get the insee code of the township in which is located the good mentioned in 
the offer 
        annonce['insee'] = csvinsee 
 
        # scraping the title of the offer 
        annonce['annoncet'] = ' '.join(response.xpath('//h1[@class="_246DF _2S4wz"]/text()').extract()).replace(";", 
                                                                                                                " ") 
 
        # scraping the price of the good for sale 
        annonce['logprix'] = response.xpath('//span[@class ="_1F5u3"]/text()').extract()[0] 
 
        # scraping the full text that the user typed to describe the good 
        annonce['descr'] = ' '.join(response.xpath('//span[@class ="content-CxPmi"]/text()').extract()).replace(";"," ") 
 
        # time and date of the scraping of the this particular offer 
        annonce['scrapdate'] = self.aDate.today().to_date_string().replace("-", "/") 
        annonce['scrapheure'] = self.aDate.today().to_time_string()  # .replace(":","/") (SI BESOIN) 
 
        # scraping if they are fees associated with the transaction ("YES", "NO", "No data") 
        annonce['loghonoraires'] = response.xpath('//div[@data-qa-id="criteria_item_fai_included"]/div/div[2]/text()') \ 
            .extract() 
        # scraping what type of good it is (house or apartment) 
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        annonce['logtypebien'] = response.xpath('//div[@data-qa-id="criteria_item_real_estate_type"]/div/div[2]/text()') \ 
            .extract() 
 
        # scraping the number of rooms 
        annonce['lognbpieces'] = response.xpath('//div[@data-qa-id="criteria_item_rooms"]/div/div[2]/text()').extract() 
 
        # scraping the area of the good (in square meters) 
        annonce['logsurface'] = ' '.join(response.xpath('//div[@data-qa-id="criteria_item_square"]/div/div[2]/text()') 
                                         .extract())[:-2] 
 
        # scraping the energy class of the good ("A", "B", "C", "D", "E", "F" or "G") 
        annonce['energieclass'] = response.xpath('//div[@class="_2Fdg- 
_1kx3G"]/div[contains(@class,"_1sd0z")]/text()') \ 
            .extract() 
 
        # scraping the Greenhouse gas emission category if the good ("A", "B", "C", "D", "E", "F" or "G") 
        annonce['energieges'] = response.xpath('//div[@class="_2Fdg- QGdfG"]/div[contains(@class,"_1sd0z")]/text()') \ 
            .extract() 
 
        # scraping the time where the offer was submitted 
        annonce['annonceh'] = ' '.join(response.xpath('//div[@data-qa-id="adview_date"]/text()').extract())[-5:] 
 
        # scraping the date where the offer was submitted 
        annonce['annonced'] = ' '.join(response.xpath('//div[@data-qa-id="adview_date"]/text()').extract())[:10] 
 
        # for a few particular townships, it was necessary to specify exceptions in order to be able to scrap 
them 
        # It was also believed necessary to obtain in the output file the name in full caps of each township 
scraped 
        listeSaints = ('Lieusaint', 'Saints', 'Saintry-sur-Seine', 'Saintlieu', 'Saint-Symphorien-le-Château', 
                       'Saint-Maur-de-Fossés', 'Saints', "Saint-Cyr-l'Ecole") 
        if response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] not in listeSaints: 
            annonce['logville'] = response.xpath('//div[@data-qa-id="adview_location_informations"]//text()') \ 
                .extract()[0] \ 
                .replace("á", "a").replace("à", "a").replace("â", "a").replace("ä", "a") \ 
                .replace("é", "e").replace("è", "e").replace("ê", "e").replace("ë", "e") \ 
                .replace("í", "i").replace("ì", "i").replace("î", "i").replace("ï", "i") \ 
                .replace("ó", "o").replace("ò", "o").replace("ô", "o").replace("ö", "o") \ 
                .replace("ú", "u").replace("ù", "u").replace("û", "u").replace("ü", "u") \ 
                .replace("'", " ").replace("-", " ").replace("É", "e").replace("ç", "c") \ 
                .replace("Ç ", "c").replace("Ÿ", "Y").replace("ÿ", "y").replace("Î", "I") \ 
                .upper().replace(" SAINT ", " ST ").replace(" SAINTS ", " ST ").replace("-SAINT ", "-ST ") \ 
                .replace("-SAINTS ", "-ST ").replace(" SAINT-", " ST-").replace(" SAINTS-", " ST-") \ 
                .replace("-SAINT-", "-ST-").replace("-SAINTS-", "-ST-").replace("SAINT", "ST") \ 
                .replace("SAINTS", "ST") 
        elif response.xpath('//div[@data-qa-id="adview_location_informations"]//text()').extract()[0] in listeSaints: 
            annonce['logville'] = response.xpath('//div[@data-qa-id="adview_location_informations"]//text()') \ 
                .extract()[0] \ 
                .replace("á", "a").replace("à", "a").replace("â", "a").replace("ä", "a") \ 
                .replace("é", "e").replace("è", "e").replace("ê", "e").replace("ë", "e") \ 
                .replace("í", "i").replace("ì", "i").replace("î", "i").replace("ï", "i") \ 
                .replace("ó", "o").replace("ò", "o").replace("ô", "o").replace("ö", "o") \ 
                .replace("ú", "u").replace("ù", "u").replace("û", "u").replace("ü", "u") \ 
                .replace("Ç ", "c").replace("'", " ").replace("-", " ").replace("É", "e").replace("ç", "c").upper() 
 
        # finally, scraping the postal code of each offer 
        annonce['logcodepost'] = str(response.xpath('//div[@data-qa-id="adview_location_informations"]//text()') 
                                     .extract()[2]).zfill(5) 
 
        yield annonce 

 
######################################################################### 
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References 

 

 
Main R packages used in the framework of the Housing Dynamics project 
 
R. Ysebaert, ‘housing’ : This package created for the project imports reference layers for all 

the case studies of the ESPON Housing dynamics project (Paris, Avignon, Barcelona, 
Madrid, Palma de Majorque, Warsaw, Lodz, Krakow and Geneva). The mapping 
functions implemented allow to create an ESPON map with all the required styles 
(colors, labels, etc.) 

 
Giraud T. Lambert N., ‘cartography’ : This package is used to create and integrate maps in 

R workflows. This package helps to design cartographic representations such as 
proportional symbols, choropleth, typology, flows or discontinuities maps. It also 
offers several features that improve the graphic presentation of maps, for instance, 
map palettes, layout elements (scale, north arrow, title...). 

 
Giraud T, Commenges H., ‘SpatialPosition’ : Description: Computes spatial position models: 

Stewart potentials, Reilly catchment areas, Huff catchment areas. 
 
Pebesma et al. ‘sf’ : Support for simple features, a standardized way to encode spatial vector 

data. Binds to 'GDAL' for reading and writing data, to 'GEOS' for geometrical 
operations, and to 'PROJ' for projection conversions and datum transformations. 

 
Wickham H., ‘dplyr’, A grammar for Data Manipulation.  A fast, consistent tool for working 

with data frame like objects,  both in memory and out of memory
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