

 FINAL REPORT //

Cross-border housing markets in
Europe
Phyton Scripts
Annex No. 8: Technical Annex 2 // July 2022

This Final Report is conducted within the framework of the ESPON 2020 Cooperation
Programme, partly financed by the European Regional Development Fund.

The ESPON EGTC is the Single Beneficiary of the ESPON 2020 Cooperation Programme. The
Single Operation within the programme is implemented by the ESPON EGTC and co-financed by
the European Regional Development Fund, the EU Member States and the Partner States,
Iceland, Liechtenstein, Norway and Switzerland.

This delivery does not necessarily reflect the opinions of members of the ESPON 2020 Monitoring
Committee.

Authors
Franziska Sielker – University of Cambridge, Department of Land Economy and Cambridge
Centre for Planning and Housing Research (UK) and TU Wien (AT)

Brian Longobardi – University of Cambridge, Department of Land Economy (UK)

Efrain Larrea – MCRIT (ES)

Andreu Ulied – MCRIT (ES)

Luis Falcón Martínez de Marañón – inAtlas (ES)

Silvia Banchini – inAtlas (ES)

Elisabet Palma Gibert – inAtlas (ES)

Technical Support
Nati Franco – MCRIT (ES)

Alessandra Cappai – InAtlas (ES)

Mauri Arévalo Amaya – inAtlas (ES)

Advisory group
Marjan Van Herwijnen (project expert, ESPON EGTC)

Caroline Clause (financial expert, ESPON EGTC)

Information on ESPON and its projects can be found at www.espon.eu.
The website provides the possibility to download and examine the most recent documents
produced by finalised and ongoing ESPON projects.

ISBN: 978-2-919816-50-7

© ESPON, 2020
Published in Luxembourg

Graphic design by BGRAPHIC, Denmark

Printing, reproduction or quotation is authorised provided the source is acknowledged and a copy
is forwarded to the ESPON EGTC in Luxembourg.

Contact: info@espon.eu

 FINAL REPORT //

Cross-border housing
markets in Europe
Phyton Scripts
Annex No. 8: Technical Annex 2 // July 2022

FINAL REPORT // Cross-border housing markets in Europe

4 ESPON // espon.eu

Table of contents

List of Figures ... 5
1 Introduction ... 6
2 Python Script Sample ... 7
2.1 Script workflow ... 7
2.2 Main_spyder.py .. 8
2.3 Quadrants.py ... 10
2.4 Get_listings.py ... 11
2.5 Helper.py .. 13
2.6 Postgres.py .. 15

FINAL REPORT // Cross-border housing markets in Europe

 ESPON // espon.eu 5

List of Figures

Figure 1: Websites scraped ... 6
Figure 2: Script Workflow ... 7

FINAL REPORT // Cross-border housing markets in Europe

6 ESPON // espon.eu

1 Introduction

A major methodology used within this project was the use of web scraping techniques for data harvesting.
This Annex presents an exemplary script to showcase the work that was undertaken as part of the project.
In total, the project developed ten scripts for each website that was scrapped. In order to share the code for
future studies, all scripts of the crawlers that have been created for this project are available in a GITHUB
public repository accessible at https://github.com/inatlasorg/ESPON-BIG-DATA.

As stated in the Technical Annex to the ESPON Report, real estate websites of eleven different countries
were scraped in order to obtain the required data for the project. In some countries one website was sufficient
to obtain data for rent and for sale although in others, more than one portal needed to be scraped. In the
case of Nestoria, as it was a common portal in some countries, the scraping code could be reused with little
adjustments in each domain, resulting in ten different python scripts.

A customized script was designed for each site in order to gather the data with specific code depending on
the structure of the portal. For example, in order to delimitate the geographical scope of the scraping, two
ways were used: one for those portals which were allowed to be defined by a quadrant specified by
coordinates and one for those which required the names of the regions containing the case study area.
Moreover, as mentioned in the Technical Annex, in some case studies the coordinates of the listings could
not be scraped and a geocoding process was needed to enrich the coordinates using the addresses.

A summary of the websites used and its scraping characteristics are detailed below:

CASE STUDY COUNTRY WEBSITE / DOMAIN GEOGRAPHICAL

SCOPE DEFINITION
GEOCODING PROCESS

Geneva-Annecy France https://www.nestoria.fr/ Quadrant No

Geneva-Annecy Switzerland https://www.homegate.ch/ Regions No

Northern Ireland – Ireland Northern Ireland https://www.nestoria.co.uk/ Quadrant No

Northern Ireland – Ireland Ireland https://www.daft.ie/ Quadrant No

Denmark – Sweden Denmark https://www.boligsiden.dk/

https://www.boliga.dk/

Quadrant

Quadrant

No

No

Denmark – Sweden Sweden https://www.blocket.se/

https://www.hemnet.se/

Regions

Regions

No

Yes

Slovakia – Austria Slovakia https://www.topreality.sk/ Regions Yes

Slovakia – Austria Austria https://www.topreality.sk/

https://www.nestoria.at/

Regions

Quadrant

Yes

No

Romania-Bulgaria Romania https://www.publi24.ro/ Regions No

Romania-Bulgaria Bulgaria https://en.realestates.bg/ Regions No

France-Spain France https://www.nestoria.fr/ Quadrant No

France-Spain Spain https://www.nestoria.es/ Quadrant No

Figure 1: Websites scraped

FINAL REPORT // Cross-border housing markets in Europe

 ESPON // espon.eu 7

2 Python Script Sample

2.1 Script workflow
Despite having all the scripts in a code repository, a sample of a script of one of the platforms (www.daft.ie)
is detailed below with the aim of describing the workflow of a crawling process.

The whole code is organized in 5 different scripts:

• Main_Spyder.py
• Quadrants.py
• Get_Listings.py
• Helper.py
• Postgres.py

These 5 scripts are related among them to achieve the scraping steps defined in the Technical Annex:

• STEP 1: Defining the geographical scope
• STEP 2: Downloading URL
• STEP 3: Downloading content
• STEP 4: Downloading latitude and longitude

The following diagram shows the scraping workflow and the relationship between the 5 scripts and the 4
scraping steps:

Figure 2: Script Workflow

As it can be observed in the diagram, the MAIN_SPYDER is the script which starts the crawler to achieve
the 4 steps of the scraping. It defines step 2 inside it, but it calls QUADRANTS script which defines step 1
and GET_LISTINGS script which defines steps 3 and 4. GET_LISTINGS also requires POSTGRES script
which defines de DB to store the data. Moreover, GET_LISTINGS and QUADRANTS scripts call the
HELPER script which defines some functions that are being used in both of them.

Finally, as mentioned before, in those cases where the script was not able to gather latitude and longitude
data, an additional step was performed using a geocoding process.

FINAL REPORT // Cross-border housing markets in Europe

8 ESPON // espon.eu

2.2 Main_spyder.py

from daft.request import quadrants

from daft.request.headers import daft_h

from daft.helper import helper

from daft.logger.formatter import MyFormatter

from daft.selectors import get_listings

from daft.DB import postgresql

import scrapy

from scrapy.http import Response

import simplejson as json

import logging

import sys

import datetime

class MainSpiderSpider(scrapy.Spider):

 """

 This is Spider Object that gets called when executing the command 'scrapy
crawl'.

 At creation time we set some important variables/constants needed for the
proper download process.

 """

 name = 'main_spider'

 single_type = None

 quadrant = None

 search_code = datetime.date.today().strftime('%y%m%d')

 fmt = MyFormatter()

 handler = logging.StreamHandler(sys.stdout)

 handler.setFormatter(fmt)

 logging.root.addHandler(handler)

 psqObject = postgresql.PostgresObject()

 def start_requests(self) -> scrapy.Request:

 """

 This method is called by default at starting the crawler (you don't need
to explicitly call it). It expects

 some URLs to start requesting.

 """

 # >> Here it basically goes through the types to be downloaded, either
specified by command line or the default

 # ones

 for type_ in ([self.single_type] if self.single_type else ['residential-
for-sale', 'residential-to-rent']):

FINAL REPORT // Cross-border housing markets in Europe

 ESPON // espon.eu 9

 logging.log(8, f'STARTING TYPE -> {type_}')

 # >> Next, for every time, it goes to the actual quadrants to be
downloaded, again specified by command

 # line or by default.

 for quadrant_ in helper.get_quadrants(self.quadrant,
quadrants.quadrants):

 logging.log(8, f'Crawler set to -> {quadrant_}')

 # >> Here it sends the request to the URL of the quadrant

 yield scrapy.Request(

 'https://gateway.daft.ie/old/v1/listings',

 method='POST',

 callback=self.parse,

 headers=daft_h.headers,

 body=json.dumps(helper.format_body(quadrant_, type_)),

 meta={'type_': type_, 'quadrant': quadrant_, 'study_case':
'ireland'}

)

 def parse(self, response: Response, **kwargs):

 """

 This is the callback method for when receives the server response. It
expects to load a JSON object (delivered)

 from the API. Counts the total number of items as so does for the total
pagination needed.

 Processes and stores the first 'X' (x = the items delivered at page 0)
items and starts pagination.

 """

 big_data = json.loads(response.body.decode('utf-8'))

 total_count = big_data['paging']['totalResults']

 laps = big_data['paging']['totalPages']

 limit = big_data['paging']['pageSize']

 quadrant = response.meta['quadrant']

 type_ = response.meta['type_']

 logging.log(1, f'>> Starting selected zone with a total of
{total_count}')

 logging.log(5, f'Total Laps of {laps}')

 logging.log(5, 'Nº 0')

 # >> Processes the first 'X' items, by calling the specified method

 get_listings.get_listings_data(response, psq=self.psqObject,
sc=self.search_code)

 # >> Starts pagination

FINAL REPORT // Cross-border housing markets in Europe

10 ESPON // espon.eu

 offset = limit

 for lap in range(1, laps):

 response.meta['cookiejar'] = helper.get_cookie()

 response.meta['lap'] = lap

 yield scrapy.Request(

 'https://gateway.daft.ie/old/v1/listings',

 method='POST',

 callback=self.parse_page,

 headers=daft_h.headers,

 body=json.dumps(helper.format_body(quadrant, type_, offset)),

 meta=response.meta,

 cb_kwargs={'psq': self.psqObject, 'sc': self.search_code}

)

 offset += limit

 def parse_page(self, response: Response, **kwargs):

 """

 Final internal method that forwards the response to a selector function
that extracts all data needed from

 every single item returned, and stores it into the DB

 """

 get_listings.get_listings_data(response, **kwargs)

2.3 Quadrants.py

#!/usr/bin/env python3

-*- coding: utf-8 -*-

"""moduleName.py Module

Module where you specify all the quadrants you want for the crawler to download
(you can also provide them via

command line arg, but THIS IS NOT RECOMMENDED. ONLY FOR DEVELOPMENT).

When typing quadrants, follow next convention:

 » Insert on a list every single point separated by comma. I.e. [NE_LNG,
NE_LAT, SW_LNG ,SW_LAT]

Created by: Davis Yoel Armas Ayala

"""

quadrants = [

 # NE_LNG, NE_LAT, SW_LNG ,SW_LAT

 # ['53.333125188661114', '-6.196114053045818', '53.31126377750158', '-
6.295070946962028'],

FINAL REPORT // Cross-border housing markets in Europe

 ESPON // espon.eu 11

 ['53.18042442', '-7.5260941', '54.25922611', '-5.97115239'],

]

2.4 Get_listings.py

#!/usr/bin/env python3

-*- coding: utf-8 -*-

"""moduleName.py Module

Explanation goes here.

Created by: Davis Yoel Armas Ayala

"""

from daft.helper import helper

from scrapy.http import Response

import simplejson as json

import logging

from daft.DB.postgresql import PostgresObject

from colorama import Fore, Style

def get_listings_data(response: Response, **kwargs):

 """

 Function that goes for every item returned by the response API, extracts all
the data needed, and stores the data

 into a DB as a new entry.

 """

 psqObject: PostgresObject = kwargs.get('psq', None)

 search_code = kwargs.get('sc', 000000)

 data = json.loads(response.body.decode('utf-8'))

 if "lap" in response.meta:

 logging.log(5, f'Nº {response.meta["lap"]}')

 # >> Goes for every item returned

 for listing_data in data['listings']:

 # >> From here, it extracts the data

 listing = listing_data['listing']

 listing_id = listing['id']

 listing_title = listing['title']

FINAL REPORT // Cross-border housing markets in Europe

12 ESPON // espon.eu

 listing_price = listing['price']

 if listing_price:

 listing_price = listing_price\

 .replace('€', '').replace(',', '').replace('AMV:',
'').replace(' ', '').replace('From', '')\

 .replace('permonth', '').replace('perweek', '')

 try:

 listing_price = int(listing_price)

 except ValueError as _:

 logging.log(4, f'Error while converting price. Actual value ->
{listing_price}')

 listing_price = 0

 listing_bedrooms = listing.get('numBedrooms', None)

 if listing_bedrooms:

 listing_bedrooms = helper.get_beds_baths(listing_bedrooms)

 listing_bathrooms = listing['numBathrooms'] if 'numBathrooms' in listing
else '0'

 if listing_bathrooms:

 listing_bathrooms = helper.get_beds_baths(listing_bathrooms)

 listing_prop_type = listing['propertyType']

 listing_adv_code = listing['seller']['sellerId']

 listing_adv_title = listing['seller']['name']

 listing_lng, listing_lat = listing['point']['coordinates']

 listing_url = 'https://www.daft.ie' + listing['seoFriendlyPath']

 listing_area = 0

 if 'floorArea' in listing:

 listing_area = listing['floorArea']['value']

 elif 'propertySize' in listing:

 listing_area = listing['propertySize'].replace('m²', '').replace('
', '')

 # >> And here it stores into the DB

 psqObject.insert_data([

 listing_url, listing_title, listing_adv_title, listing_adv_code,
listing_lng, listing_lat,

 response.meta['type_'], listing_id, listing_prop_type,
listing_price, listing_bedrooms, listing_bathrooms,

FINAL REPORT // Cross-border housing markets in Europe

 ESPON // espon.eu 13

 search_code, listing_area, 'daft', 'ireland'

])

 logging.log(6, Fore.LIGHTGREEN_EX + f">> {len(data['listings'])} Items
processed" + Style.RESET_ALL + '\n')

2.5 Helper.py

#!/usr/bin/env python3

-*- coding: utf-8 -*-

"""moduleName.py Module

Explanation goes here.

Created by: Davis Yoel Armas Ayala

"""

from daft.request import daft_body

import random

import logging

import re

def get_quadrants(input_quadrant: str or None, default_quadrants: [[str]]) ->
[[str]]:

 if input_quadrant:

 return [input_quadrant.replace(' ', '').split(',')]

 return default_quadrants

def format_body(quadrant: [str], type_: str, offset: int = 0) -> daft_body.body:

 """

 Function that formats a raw/generic dictionary on provided data, which is
gonna end up being the body of an

 outgoing request

 """

 body = daft_body.body

 body['section'] = type_

 body['paging']['from'] = str(offset)

FINAL REPORT // Cross-border housing markets in Europe

14 ESPON // espon.eu

 body['geoFilter']['top'] = quadrant[0]

 body['geoFilter']['right'] = quadrant[1]

 body['geoFilter']['bottom'] = quadrant[2]

 body['geoFilter']['left'] = quadrant[3]

 body['geoFilter']['section'] = type_

 if offset > 0:

 body['geoFilter']['showMap'] = "false"

 body['geoFilter']['mapView'] = "false"

 return body

def get_cookie() -> int:

 """ Function that returns a random aggregate number to be use as a cookie
tracker by Scrapy """

 return random.randint(0, 20) + random.randint(0, 20) + random.randint(0, 20)
+ random.randint(0, 20)

def get_beds_baths(text: str) -> int or float:

 aux = text.replace('Bed', '').replace('Bath', '').replace(' ',
'').replace('bed', '')

 if '.' in aux:

 try:

 aux = float(aux)

 except ValueError as _:

 logging.log(4, f'Error while converting baths/beds to float. Current
value -> {aux}')

 aux = 0

 elif '&' in aux or ',' in aux:

 aux = get_complicated_beds(aux)

 else:

 try:

 aux = int(aux)

 except ValueError as _:

 logging.log(4, f'Error while converting baths/beds to float. Current
value -> {aux}')

 aux = 0

 return aux

def get_complicated_beds(bedrooms: str):

FINAL REPORT // Cross-border housing markets in Europe

 ESPON // espon.eu 15

 aux = re.findall(r'(\d+)', bedrooms)

 if aux:

 try:

 add_up = sum(list(map(lambda x: int(x), aux)))

 return add_up

 except ValueError:

 logging.log(4, f'Error while converting baths/beds to float. Current
value -> {aux}')

 return 0

 return 0

2.6 Postgres.py

#!/usr/bin/env python3

-*- coding: utf-8 -*-

"""moduleName.py Module

Explanation goes here.

Created by: Davis Yoel Armas Ayala

"""

import psycopg2

import logging

from colorama import Fore, Back, Style

import os

err = Back.RED + Fore.GREEN + Style.BRIGHT + "[BD {} ERROR]" + Style.RESET_ALL
+ ": {}"

class PostgresObject(object):

 conn = cursor = ""

 def __init__(self):

 """ DataBase Connection """

 self.conn = psycopg2.connect(

 user=os.getenv('DB_USER'),

 password=os.getenv('DB_PWD'),

 host=os.getenv('DB_HOST'),

FINAL REPORT // Cross-border housing markets in Europe

16 ESPON // espon.eu

 port=os.getenv('DB_PORT'),

 database=os.getenv('DB_DB'),

)

 self.conn.autocommit = True

 self.cursor = self.conn.cursor()

 def insert_data(self, data: list):

 """

 Insert on DataBase Table (The schema always presented)

 """

 try:

 # >> Executes the query for INSERT

 self.cursor.execute(

 f"""INSERT INTO espon.espon (listing_url, listing_title,
advertiser, advertiser_code, lng,lat,

 listing_type, listing_id, listing_prop_type, listing_price,
listing_rooms, listing_bathrooms,

 search_code, listing_area, listing_crawled_platform,
listing_study_case)

 VALUES ({("%s, " * 16)[:-2]})""", data)

 self.conn.commit()

 except BaseException as e:

 logging.log(4, err.format("INSERT", e))

 logging.exception(e)

 logging.log(4, Fore.WHITE + Style.BRIGHT + ">> With URL -> " +
Style.RESET_ALL + "{}".format(data[0]))

 self.conn.rollback()

FINAL REPORT // Cross-border housing markets in Europe

18 ESPON // espon.eu

ESPON 2020

ESPON EGTC
4 rue Erasme, L-1468 Luxembourg
Grand Duchy of Luxembourg
Phone: +352 20 600 280
Email: info@espon.eu
www.espon.eu

The Single Operation within the programme is
implemented by the ESPON EGTC and co-financed
by the European Regional Development Fund, the
EU Member States, the United Kingdom and the
Partner States, Iceland, Liechtenstein, Norway and
Switzerland.

Disclaimer
This delivery does not necessarily reflect the opinion
of the members of the ESPON 2020 Monitoring
Committee.

